UNCLASSIFIED

AD NUMBER

ADB131157

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
only; Critical Technol ogy; JAN 1989. O her
requests shall be referred to Aviation Applied
Technology Dir., AVSCOM Fort Eustis, VA This

docunent contains export-controlled technical
dat a.

AUTHORITY

AVSCOM I tr 22 NMar 1990

THISPAGE ISUNCLASSIFIED

,?“np ’.': y ‘7 2

USAAVSCOM TR-88-D-14B

US ARMY

AD_B 131 157 332‘332 COMMAND

., DYNAMIC SYSTEM COUPLER PROGRAM (DYSCO 4.1)
" VOLUME Il - USER’S MANUAL

»
Alex Berman, Shyi-Yuang Chen, Bruce Gustavson, Patricia Hurst
Kaman Aerospace Corporation
P.0.Box 2
Bloomfield, CT 06002-0002 DT] C
ELECTER
January 1989 , MAR 06 198Q |
o | VQ H
Final Report for Period September 1985 - May 1988
1 Distribution authorized to U.S. Government agencies and their
contractors, critical technology, January 1989. Other requests
for this document shall be referred to the Aviation Applied

Technology Directorate, U.S. Army Aviation Research and Tech-
nology Activity {AVSCOM), Fort Eustis, VA 23604-5577.

WARNING

This document contains technical data whose export is restricted by the Arms Export Control Act
(Title 22, U.S.C., Section 2751 st seq.) or Executive Order 12470. Violators of these export iaws
are subject to severe criminal penaities.

Prepared for

AVIATION APPLIED TECHNOLOGY DIRECTORATE
US ARMY AVIATION RESEARCH AND TECHNOLOGY ACTIVITY (RVSCOM) -
Fort Eustis, VA. 23604-5577

AVIATION APPLIED TECHNOLOGY DIRZCTORATE POSITION STATEMENT

This report documents the work performed to enhance the Dynamic System
Coupler (CYSCO) computer program through the addition of advanced modeling
capabilities. These capabilities include rotor blade damage modeling,
Eigen analysis development, general time history solution development,
frequency domain solution development, general modal representation of
three-dimensional structures, 1ifting surface modal representation, landing
gear, general force, linear constraints, 1ifting surface aerodynamics, cal-
culation of component interface and internal loads, and a nonlinear spring
and damper system. While the improvements incorporated into DYSCO, as a
result of this work, increase the analytical capabilities of the program,
it still has limitations in several areas. More correlation with flight
test data or with similar proven analytical tools is needed to validate
program results. A new or improved trim algorithm is needed to eliminate
deficiencies in the current DYSCO trim algorithm. Also, DYSCO should be
converted to double precision to increase the accuracy of program results.

Mr. Robert A. Lindholm of the Aeronautical Technology Division served as
the project engineer for this contract.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so
designated by other authorized documents.

When Government d.wings, specifications, or other data sre used for any purpose other than in connection with a
definitely related Government procurement operstion, the United States Government thereby incurs no responsibility
nor any obligetion whatsosver; and the fact that the Government mwy have formulated, furnished, or in any way
supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwiss as in any
manner licansing the holder or any other person or corporation, or conveying any rights or permission, to manu-
facture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such
commercisl hardware or software.

DISPOSITION INSTRUCTIONS

Oestroy this report by any method which precludes reconstruction of the document. Do not return it to the
originator.

The following notice applies to any unclassified (including originally classified
and now declassified) technical reports released to '"qualified U.S. contractors"
under the provisions of DoD Directive 5230.25, Withholding of Unclassified
Technical Data From Public Disclosure.

NOTICE TO ACCOMPANY THE DISSEMINATION OF EXPORT-CONTROLLED TECHNICAL DATA

1. Export of information contained herein, which includes, in some
circumstanceg, release to foreign nationals within the United States, without
first obtaining approval or license from the Department of State for items
controlled by the International Traffic in Arms Regulations (ITAR), or the
Department of Commerce for items controlled by the Expsrt Administration
Regulations (EAR), may constitute a violation of law.

2., Under 22 U.S.C. 2778 the penalty for unlawful export of items or information
controlled under the ITAR is up to two years imprisonment, or a fine of $100,000,
or both. Under 50 U.S.C., Appendix 2410, the penalty for unlawful export of
items or information controlled under the EAR is a fine of up to $1,000,000, or
fi-e times the value of the exports, whichever is greater; or for an individual,
imprisonment of up to 10 years, or a fine bf up to $250,000, or both.

3. In accordance with your certification that establishes you as a '"qualified
U.S. Contractor", unauthorized dissemination of this information is prohibited
and may result in disqualification as a qualified U.S. contractor, and may be

condidered in determining your eligibility for future contracts with the
Department of Defense.

4. The U.S. Government assumes no liability for direct patent infringement, or
contributory patent infringement or misuse of technical data.

5. The U.S. Government does not warrant the adequacy, accuracy, currency, Or
completeness of the technical data.

6. The U.S. Government assumes no liability for loss, damage, or injury
resulting from manufacture or use for any purpose o6f any product, article,
system, or material involving reliance upon any or all techoical data furnished
in response to the request for technical data.

7. 1If the technical data furnished by the Government will be used for commercial
manufacturing or other profit potential, a licemnse for such use may be necessary.

Any payments made in support of the request for data do not include or involve
any license rights,

8. A copy of this notice shall be provided with any partial or complete
reproduction of these data that are provided to qualified U.S. contractors.

DESTRUCTTION NOTICE

For classified documents, follow the procedures in DoD 5200.22-M, Industrial
Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program
Regulation, Chapter IX. For unclassified, limited documents, destroy by any

method that will prevent disclosure of contents or reconstruction of the
document.,

T W

UNCLASSIFIED
§Ei U:llY ZLA§§IF!ZA|I5N 6; |H|§ FAGE

REPORT DOCUMENTATION PAGE

Ts. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

B e e =T ST T S =S ——————
2a. SECURITY CLASSIFICATION AUTHORITY

125, DECLASSIFICATION / DOWNGRADING SCHEDULE

Aviation Applied Technology Di ectorate, U.S. Army Awatcon Research &
Technolo 77.

T OISTRIBUTION/ AVAILABILITY OF REPORT Distribution authogized 0]
U.S. Government agencies and their contractors, Critical Technical, Jan-
ary 1989. Other requests for this document shall be referred to the

Activity (AVSCOM/

a. PERFORMING ORGANIZATION REPORT NUMBER(S)
R-1790

5. MONITORING ORGANIZATION REPORT NUMBERLS)
USAAVSCOM TR 88-D-148B

6b. OFFICE SYMBOL

6a. NAME OF PERFORMING ORGANIZATION
(If applicable,;

KAMAN AEROSPACE CORPORATION

7a. NAME OF MONITORING ORGANIZATION
AVIATION APPLIED TECHNOLOGY DIRECTORATE

6c. ADDRESS (Gity, State, and ZIP Code)
P.0. BOX 2
BLOOMFIELD, CONNECTICUT 060020002

7b-. ADDRESS (City, State, and ZIP Code)

U.S. ARMY AVIATION RESEARCH AND TECHNOLOGY
ACTIVITY (AVSCOM)

FORT FUSTIS. VIRGINIA 23604-8577

8b. OFFICE SYMBOL

8a. NAME OF FUNDING / SPONSORING
(if applicable)

ORGANIZATION

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
DAAJ02-85-C-0033

8¢c. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJ TASK WORK UNIT
ELEMENT NO. ffr] 622- | NO. ACCESSION NO.
62209A 09AH76 B 43EK

11. TITLE (Include Securrty Classification)

Dynamic System Coupler Program (DYSCO 4.1),

Volume II - User's Manual

12. PERSONAL AUTHOR(
Alex Berman,

S
S)h,y1 -Yuang Chen, Bruce Gustavson, Patricia Hurst

13a. TYPE OF REPORT 13b. TIME COVERED
Final

414. ojrs Of REPQMegur, Month, Day)

1S. PAGE COUNT
anuary 354

from 9/13/85 vo 5/13/8
16. SUPPLEMENTARY NOTATION

Volume II of a three-volume renort.

17 COSAT! CODES

GROUP SUB-GROUP

FIELD

1
i

4

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ?

Dynamic analysis, Component coupling, Helicopter ana'lysis.ﬁﬂe

\

aerodynamic behavior of rotorcraft and other

second-order ordinary differential egquations.

coupled system.——

B85TRACT (Continue on reverse if necessary and identify by block number)
YSCO is an interactive computer program which allows a user to model the dvnamic and

user-oriented modeling procedures and data base management for dynamic analyses of
coupled systems of independently modeled componeiits.

1ibrary of algorithms to formulate and couple components and to obtain solutions of the

aerospace structures. The program provides

Each component is a system of
The user employs modules from an expandable

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

QOunclassiFieounuMiTED [same as RPT. [JOTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

22a. NAME OF RESPONSIBLE INDIVIDUAL
R.A. Lindholm

22b. TELEPHONE (Inc/ude Ares Code) | 22c. OFFICE SYMBOL
@04) 878-3773 SAVRT-TY-ATA

DD FORM 1473, 84 MAR

83 APR edition may Qe used until exhaustea.
Ali other editions are obsolete.

SECURITY CLASSIFICATICN OF THIS PAGE
"UNCLASSIFIED

1.0 GENERAL OVERVIEW

2.0

1.1

1.2

2.1

2.2

TABLE OF CONTENTS

DYSCO LIBRARIES . . .« « o« v o e oo v o m

1.1.1 Technology Module Library. o =« =0 " °
1.1.2 Modeling Data Library. « « .« == - om 0"
1.1.3 External Data Library. o o« o oommm 0

COUPLING. . « o v v o o v v oo e o e et

1.2.1 Coordinate Transformations « « « « « o -
Degree of Freedom Names. - -« "~

1.2.2
1.2.3 Explicit Coupling. . . . « o o v o oo o m et
-1.2.4

.2.4 Implicit Coupling. . . . o o o e v om o m o
1.2.5 Other Uses of Implicit Relationships « « -

RUN INITIATION. . . o o o o oo v e v e e

2.1.1 Beginning Execution. o o oeeeee S
2.1.2 File Assignments« o o eoeee et

Run Data File (RDF)« o v v v v o
User Data File (UDF).« « o = v v v
Sequential File (SF).« « oo -

2.1.2.1
2.1.2.2
2.1.2.3
2.1.2.4 Plot File (PF). . . . -« o v v v e e
2.1.2.5 Lloads File (LF) o v v oo oo e
2.1.2.6 Utility File (UF)« o oo e oe
2.1.2.7 Installation Parameters+ . -

2.2.1 CASE . v v v v v o v e e

MM N
RN N R
newr

(=)

m

—

1 Editing a Modelo ees
2.2.5.2 Editing a Component/Force Input Data Set. .

.1 Edit concepts
2 Edit passes. o . oo ee
.3 Edit examples

.

.

.

.

.

.

FAGE

el LIST & & & . . 0 s e e e e e e e e e e e e 35
2.2.7 LOOK e e e e e e e 43
2.2.8 NEW.o e 43
2.2.8.1 NewModel 43
2.2.8.2 New Component/Force Input Data Set. 44

2.2.9 RERUN. o o e e e e e 45
2.2.10 RUN e e e e e 46
2.2.11 TOC e e e e e e e e e 47
2.2.12 VAL e e e e e e e e e e 47
2.2.13 QUIT. e e e e e e e e e e 48
2.3 OPERATICNAL SCENARIO. « . . v v v v v v v v v v . 48
3.0 INSTALLED TECHNOLOGY MODULES 53
3.1 COMPONENT TECHNOLOGY MODULES. 53
3.1.1 CFM2 - Fuselage, Modal 54
3.1.1.1 Primary Features. 54
3.1.1.2 Degrees of Freedom. 55
3.1.1.3 Input, CFM2 56

3.1.2 CRR2 - Rotor, Rigid Blades 60
3.1.2.1 Primary Features. 61
3.1.2.2 Degrees of freedom. 61
3.1.2.3 Input, CRR2 63

3.1.3 CRE3 - Rotor, Elastic Blades 69
3.1.3.1 Primary Features. 69
3.1.3.2 Degrees of Freedom. 70
3.1.3.3 Inmput, CRE3 72

3.1.4 CCEl - Control System, Elastic Rods. 85
3.1.4.1 Primary Features. 85
3.1.4.2 Degrees of Freedom. 86
3.1.4.3 Inmput, CCE> 86

3.1.5 CCLP - Control System, Elastic Rods. 89
3.1.5.1 Primary Features. 89
3.1.5.2 Degrees of Freedom. 89
3.1.5.3 Input, CCEZ 90

3.1.6 CSF1 - Structure, Finite Element 90
3.1.6.1 Primary Features. 90
3.1.6.2 Degrees of Freedom. 91
3.1.6.3 Input, CSF1 91

TABLE OF CONTENTS

iv

.10

.11

12

.1.13

.14

.15

.16

TABLE OF CONTENTS

PAGE

CESY! - Elastic Stop (Nonlinear Spring) 92
3.1.7.1 Primary Features. 92
3.1.7.2 Degrees of Freedom. 93
3.1.7.3 Imput, CESI 93
CLC1 - Arbitrary Linear Constraints. 95
3.1.8.1 Primary Features. 95
3.1.8.2 Degrees of Freedom. 96
3.1.8.3 Input, CESI 96
CFM3 - Fuselage, Modal (3-d) 97
3.1.9.1 Primary Features. 97
3.1.9.2 Degrees of Freedom. 98
3.1.9.3 Input, CFM3 99
CRD3 - Rotor, Damaged (Nunidentical) Blades 103
3.1.10.1 Primary Features 104
3.1.10.2 Imput, CRD3. 105
CLC2 - Linear Constraints 115
3.1.11.1 Primary Features 116
3.1.11.2 Inmput, CLC2. 116
CLCA - Linear Constraints 117
3.1.12.1 Primary Features 117
3.1.12.2 Input, CLCO. oo . .. 117
CGF2 - General Force. 118
3.1.13.1 Primary Features 118
3.1.13.2 Degrees of Freedom 119
3.1.13.3 Input, CGF2. 119
CLG2 - Landing Gear, 122
3.1.14.1 Primary Features 122
3.1.14.2 Degrees of Freedom 123
3.1.14.3 Input, CLG2. 124
CLS2 - Lifting Surface (Modal). 129
3.1.15.1 Primary Features 129
3.1.15.2 Degrees of Freedom 130
3.1.15.3 Input, CLS2. 131
CGL@ - Global Transformation. 136
3.1.16.1 Primary Features 136
3.1.16.2 Degrees of Freedom 136
3.1.16.3 Input, CGLA. 136

3.2

3.3

TABLE OF CONTENTS

PAGE

3.1.17 CSF3 - Nonlinear Spring, Damper System. 137
3.1.17.1 Primary Features 137
3.1.17.2 Degrees of Freedom 138
3.1.17.3 Inmput, CSF3. 138

FORCE TECHNOLOGY MODULES. « « o 140
3.2.1 FSS]1 - Sinusoidal Shaker 141
3.2.1.1 Primary Features. 141
3.2.1.2 Input, FSS1 o . ..o 141

3.2.2 FRAP - Rotor Aerodynamics, Linear (2-d). 142
3.2.2.1 Primary Features. 142
3.2.2.2 Input, FRAB 142

3.2.3 FRA2 - Rotor Aerodynamics, Tabular (2-¢; 145
3.2.3.1 Primary Features. 145
3.2.3.2 Input, FRAZ oo 146

3.2.4 FRA3 - Rotor Aerodynamics. 148
3.2.4.1 Primary Features. 149
3.2.4.2 Input, FRA3 151

3.2.5 FFAP - Fuselage Aerodynamics, Flat Plate Drag. 155
3.2.5.1 Input, FFAg 155

3.2.6 FFC2 - Fuselage Aerodynamics, Linear (2-d) 155
3.2.6.1 Primary Features. 156
3.2.6.2 Input, FFC2 o ... 156

3.2.7 FLA2 - Lifting Surface Aerodynamics. 164
3.2.7.1 Primary Features. 164
3.2.7.2 Input, FLA2 165
SOLUTION TECHNOLOGY MODULES 169
3.3.1 SEA3 - Eigenanalysis 169
3.3.1.1 Input, SEA3 169
3.3.1.2 Output, SEA3. 170

3.3.2 SEA4 - Eigenanalysis 170
3.3.2.1 Input, SEA4 170
3.3.2.2 Output, SEA4. 171

3.3.3 SEAS - Eigenanalysis 171
3.3.3.1 Input, SEAS 171
3.3.3.2 Nutput, SEAS.o, 172

vi

4.0

TABLE OF CONTENTS

PAGE

3.3.4 STH3 - Time History. 172

3.3.4.1 Input, STH3 173

3.3.4.2 Output, STH3. 178

3.3.5 STH4 - Time History. 178

3.3.5.1 Input, STH& 180

3.3.5.2 Output, STH4. 185

3.3.6 SSF3 - Stability Floquet 185

3.3.6.1 Input, SSF3 186

3.3.6.2 Output, SSF3. 190

3.3.7 STR3 - Trim. o v v v e e e e e 190

3.3.7.1 Input, STR3« 191

3.3.7.2 Qutput, STR3. 198

3.3.8 SFD1 - Frequency Domain, Mobility. 199

3.3.8.1 1Input, SFD1 199

3.3.8.2 Output, SFD1. 201

3.3.9 SII3 - Component Interface and Internal lLoads. 201

3.3.9.1 CSFIL 202

3.3.9.2 CESIL oo 203

3.3.9.3 CRE3L, CRD3L. 203

3.3.9.4 CRE3L, CRD3L Calculations 204

3.3.9.5 Input, SII3 A 205

3.3.9.6 Output, SII3. 206

3.4 GLOBAL REFERENCE SYSTEM = m o oo oo 206

3.4.1 Inertial Coordinate System 206

3.4.2 Giobal Coordinate System 207

3.4.2.1 Time History Solutions. 207

3.4.2.2 Trim Solutions. 208

3.4.3 Component Coordinate System. 209

3.4.4 Local Coordinate System. 209

3.4.4.1 Lumped Parameter Systems. 210

3.4.4.2 Rotor Systems 210

ADDITION OF TECHNOLOGY MODULES 212

4.1 DEVELOPMENT OVERVIEW. 212

4.1.1 Technology Module Library. 212

4.1.2 DYSCO Input Processor (DIP). 216

4.1.3 Executive Common Blocks. 219

4.1.4 Utilities.o 219
vii

4.2.1
4.2.2

4.2.3
4.2.4
4.2.5
4.2.6

TABLE OF CONTENTS

4.2.2.1 TCODE - Type Codes.
4.2.2.2 PCODE - Property Codes.
4.2.2.3 BCODE - Boolean Codes
4,2.2.4 CCODE - Condition Codes

Base/Global/Model Variables Table Construction

(IBTAB/IGTAB/IXMTAB) ¢
Global Variables Selection Table (IGVTAB).
Global Constants Table (IGCTAB).
Run-Time Errors. « .« « v v v v v v v v oo

4.3 COMPONENT DEVELOPMENT o o . ..

4.3.1
4.3.2

Common Block Usage
Component Technical Module Development

4.3.2.1 Component Input Module (C---I).

4:3.2.2 Component Definition Module (C---D)

4.3.2.3 Component Coefficient Module (C---C).

4.3.2.4 Component Active Module (C---A)

4.3.2.5 Component Block Module (C---B).

4.3.2.6 Component Loads Module (C---L).

4.3.3 Component Installation

4.4 FORCE DEVELOPMENT o . . v v v v v v v v
4.4.1 Common Block Usage

4.4.2

4.4.3

Force Technical Module Development

4.4.2.1 Force Input Module (F---I).
4.4.2.2 Force Coefficient Module (F---C).
4.4,2.3 Force Active Module (F---A)
4.4.2.4 Force Block Module (F---B).

Force Installation

4.5 SOLUTION DEVELOPMENT.

4.5.1
4.5.2

4.5.3

Common Block Usage
Solution Technical Module Development.

4.5.2.1 Solution Input Module (S---1)
4.5.2.2 Solution Active Module (S---A).

Solution Installation.

viii

5.0

6.0

PAGE
4.6 COMMON BLOCKS« . o o v e 259
4.6.1 Executive Common Blocks. 259
4.6.1.1 /JAFTAB/ 259

4.6.1.2 /XBG/ 261

4.6.1.3 /XMODEL/. 262

4.6.1.4 /XTM/o 264

4.6.1.5 /TCI/o e 266

4.6.1.6 /XWORK/« . . . o o 267

4.6.2 Shared Common Blocks 267
4.6.2.1 Installations 267

4.6.2.2 Installed Shared Common Blocks. 268

4.6.2.2.1 /ROT/. « . . o oo 268

4.6.2.2.2 /CONROT/« o 268

4.6.2.2.3 /JTIRIM/o o oo 269

4.6.2.2.4 JERD/. 269

4.6.2.2.5 JELS/.o .o 270

4.6.2.2.6 /GLOCOR/ 270

4.7 UTILITIES o o o e e e s e e e e 270
4.7.1 Base/Global Retrieval Utilities (XBG---) 270
4.7.1.1 Overview. 270

4,7.1.2 XBG Utilities 273

4.7.2 General Purpose Utilities. 278
4.7.2.1 Overview. « . v v v o v e 278

4.7.2.2 General Utilities 279
TILLUSTRATIVE APPLICATIONS. o o v v v . 286
5.1 COUPLING OF STANDARDIZED DEGREES OF FREEDOM 286
5.2 CSF1 APPLICATION. v v v v v v v o e e 290
5.3 IMPLICIT COUPLING - CLCY.« . « .. 295
5.4 CESI APPLICATION. v o v v v v v v e v e, 299
5.5 DAMAGE SIMULATION o v v v v v v e . 300
TILLUSTRATION OF AH-1G ANALYSIS 303

TABLE OF CONTENTS

ix

-n
—
o
(=
=
m

WO ~NOh ;&g —

DYSCO Libraries
Simple Coupled Structure

LIST OF ILLUSTRATIONS

..................

Simple Coupled Structure, DYSCO DOF Names
Modal Structure Added to Structure of Figure 3.
1 - Setuo. .
Changs Values.
Automatic New Variable
Automatic Prompt New Value
Null Matrix.
Symmetric.o

EDIT
EDIT
ECIT
EDIT
EDIT
EDIT
EDIT

Example
Example
Example
Example
Example
Example
Example

RN PO P st e

. Diagonal

Modeling Scenario and Command Relationship.
CFM2 Rigid Body and Interface Degrees of Freedom.

CRR2 Degrees of Freedom
CRE3 Degrees of Freedom
CCE1 Degrees of Freedom
CES] Degrees of Freedom

CFM3 Rigid Body and Implicit Degrees of Freedom

Local Coordinate Vectors
CLG2 Degrees of Freedom
CLS2 Degrees of Freedom
Definition of Spanwise Stations
Inertial and Global Coordinate Systems
Relationship Between Modeling Scenario Technical Modules. . .
Shared Common Block
Private Common Blocks
Ground Resonance Model

ooooooooooooooooooo

1.0 GENERAL OVERVIEW

DYSCO is a program which provides general capabilities in the specific domain
of dynamic and aerodynamic analysis. It is based on an approach that couples
the equations of motion of independent components and force algorithms into a
"model"” which may be processed by various solution procedures.

Primary features of DYSCO are: interactive operation with optional batch mode
capabilities; validated input and stored data sets; convenient editing of data
and models; nonlinear equations; arbitrary types of generalized coordinates;
highly automated component coupling; and expandable technology library of com-
porient representations, forcing equations, and solution algorithms.

This report provides all the information necessary to make use of the program
and to install new technology modules.

1.1 DYSCO LIBRARIES

The operation of the program may be described by an examination of the system
architecture from the perspective of the DYSCO libraries, as shown on Fig-
ure 1.

The Executive System controls al® operations involving the three separate
Tibraries. The functions and uses of the libraries are described in the fol-
lowing paragraphs.

1.1.1 Technology Module Library. All specific analysis technology is
included in this area. Each technology module consists of several FORTRAN
subroutines. Details may be found in Section 4. For use of the program, how-
ever, it is only necessary to understand the basic functions of the three
types of technology moduies.

"Component modules," named in the form C---, perform the following principal
functions: accept input data to be stored on user files (see paragraph

MODELING DATA LIBRARY

COMPCNENT/FORCE/MODEL/CASE/ATRFOIL

CRR2

CFM2

C=a

FRAB

FFA®

LI]
DYSCO
EXECUTIVE
SYSTEM
A{RFOIL/INDUCED VELOC. TABLES oo o

EXTERNAL DATA LIBRARY

Figure 1.

DYSCO Libraries.

.

SIHa

STR3

Saen

TECHNOLOGY
MOOULE
L IBRARY

1.1.2); define degrees of freedom in a particular application; compute matrix
coefficients of second-order differential equations of component; and estab-
lish interfaces to "Force modules"” as necessary (see next paragraph).

"Force modules,"
tions: accept input data to be stored on user files (see paragraph 1.1.2) and

named in the form F---, perform the following principal func-

compute forces applied to a particular component based on information supplied
by a component module during a solution procedure.

"Solution modules," named in the form S---, perform the following functions:
accept input; carry out numerical solutions of specified "model” (combination

of components and forces); and provide output data.

Samples of technology modules are:

CRR2 Rigid blade, hinged helicopter rotor
CSF1 Structure, finite element

CFM2 Fuselage, modal representation

FRAP Rotor aerodynamic force

FSS1 Sinusoidal shaker force

STH3 Time history solution

SEA4 Eigenanalysis solution

Details of all installed technology modules are given in Section 3. New tech-
nology modules may be added to the library, as described in Section 4.

1.1.2 Modeling Data Library. A1l data associated with specific applications

of component and force technology modules and definitions of models are stored
in this library. Data is originally input as one of the functions of the C---
and F--- technology modules.

The library consists of any number of user files; however, only up to four may
be attached to the program at one time. In addition, a temporary file is

always available which is initialized at the start of each execution cf the
program.

Each data unit on the files is uniquely identified by a data set/data member
(ds/dm) name. A data unit (ds/dm) may contain a complete set of input for a
particular technology module. The dm name is automatically supplied by the
Executive during input and identifies how the data is to be used. For data
input through CSF1, for example, the dm is "CSF1." The ds name is arbitrary
and is provided by the user during the input of the data.

Samples of unique data units (ds/dm) could be:

AH1J3/CRR2
AH1J3/CFM2
AH1J3/MODEL
XXXX/CRR2

A complete description of usage of the user files is given in Section 2.

1.1.3 External Data Library. This library consists of up to two sequential
files which may be attached to the program during any run. Its purpose is to
provide another source for data. At present, airfoil tables and induced velo-
city tables may be accessed in this manner. Airfoil tables may be read and
converted into a DYSCO format and stored on a user file with the assigned dm
name, AIRFOIL.

This library, in ths future, could be used to accept data from other programs,
such as NASTRAN or a CFD program.

1.2 COUPLING

Each component represents a free independent structure. A model is formed by
attaching the components to each other to form a system of components, i.e., a

"model."” The procedure used in DYSCO to define the intercomponent attachments
is described in the following paragraphs.

1.2.1 Coordinate Transformations. Each component is represented by a set of
equations of the form

MIXI + CIXI + KIXI = FI + FIR (1)

where Ml’ CI’ and KI are the coefficient matrices of component I, FI is the
forcing function vector, and FIR is a vector of the reaction forces at the
interfaces to other components. Ml’ CI’ KI’ and FI may be nonlinear functions
of the component state vector and/or time. FIR is unknown. XI is the vector

of displacements of the generalized coordinates of the component.
The equations of a model (a set of coupled components) are of the form

MX + CX + KX = F (2)

where M, C, K, F, and X are defined as for the component.
Consider a nmatrix, TI’ which transforms X into XI:

Xy = T(X (3)

If the components are physically joined, TI is constant and it can be shownl
that

1Hurty, W. C., "Dynamic Analysis of Structural Systems by Component Mede

Synthesis," Technical Report 32-530, Jet Propulsion Laboratory, Pasadena,
California, January 1964.

(4)

and

The requirement that TI be constant (not a function of time) implies that com-
ponents are attached rigidly in a physical sense. If two components are elas-
tically coupled, i.e., separated by a spring (or damper), this is treated in
DYSCO by including the spring as an element of one of the components or by
treating the spring as a separate component.

In the case of a helicopter rotor component, the hub degrees of freedom should
be in the fixed system so they may be coupled to the pylon. The blade degrees
of freedom should be in the rotating system for ease of interpretation and so
that they may be coupled to a rotating control system element. This formula-
tion results in periodic coefficients in a rotor component equation which is
usual and quite .onsistent -with equation 1.

As a simple example of coupling, consider three simple components with degrees
of freedom as shown in Figure 2. The data for each component follow.

x21

X1 kEi % X22

k X213
1 F} x31
M M
|l"-12 --- =23 N
I'(12 13
| R
M3
xX32
k13 -J X1y _} 3
M
e H“* - e e e Lol 32
COMPONENT 1 2 3

Figure 2. Simple Coupled Structure.

;
™1 R
M2
M, =
1
™3 -
m
14
I]
" -k Rtk ke O
l’
0 Ky Ktk kg3
Lo 0 K13 K3
()
1
X12
X, = 4 >
1
X13
L"14
I J
Component 2
;
Mo .
m
M, = 22 .
M3
I

L X23

o

Component 3

M3y
M. =
3
M32
K K
| ok ke
K3-
kg Ky
X31
X. =
3
X32

The components are coupled (joined) at the dashed lines in the figure.
independent degrees of freedom of the "model" may be written

L X22

o © o

o o o

1

7

10

The model matrix coefficients from Equations 1 - 4 are:

X 1
™1
my9*Ma3*Msy
. M= 3
my4*M32
M21
L Ma2
kg oK 0 0 0 0
k,,+k
-k ntkie -k K 0 -k
11 +k31+k22 12 31 22
2 - 0 Kk Ktk R 0 0
| 0 Ky k3 katka 0 0
| 0 0 0 0 ky ka1
| l 0 Kpp - O 0 Ky Kgrtkae
1
| - . 1
! 1
! f12+f23+f31
-
| f13
F=< >
flatfa2
fa1
L Fa2
| 1

Thi< illustration represents a very simple case. More complex coupled systems
will be described below. Note, however, that all these operations are invis-
ible to the user of the program. When the components and couplings are
defined, all operations are automatically performed by the Executive.

1.2.2 Degree of Freedom Names. The procedure used in the program to define
the couplings, compute the transformation matrices, and compute the matrices
of the coupled system involves the recognition of the names of the degrees of
freedom by the Executive.

A1l degrees of freedom are represented by an 8-character name in FORTRAN for-
mat A4,I4. The naming of degrees of freedom is one of the functions of the
component technology modules. In some cases, the names are automatically
assigned; in other cases, they are provided as user input.

Examples of degree of freedom-names are:

BETA1289 Flapping angle, rotor 1, blade 2
PTCH20pp Pitch angle of structure 2
QFUS139p Amplitude of mode 3 of structure 1
X1200009 User supplied name.

1.2.3 Explicit Coupling. The simplest automatic coupling in DYSCO occurs
when the Executive detects two or more degrees of freedom with identical
names.

If, in the example on Figure 2, the user had named the degrees of freedom as
shown in Figure 3, no further information would be required and all computa-
tions would be performed by the program.

It is important that the user be aware of the DOF names automatically assigned
to certain compenents, so that he may conveniently attach other components as
desired. The component descriptions in paragraph 3.1 include the definitions
of these degree of freedom names.

12

-1X210000
M

21
X110000 X271 X220000
—1 oY)
X120000 k,, X120000
- ---H
23 3

X1400000

X1200000

|

X1300000
_j k31 3

X140000

1

Figure 3. Simple Coupled Structure, DYSCO DOF Names.

13

As an example of such an application, if the user wished to add a flapping
spring to blade 2 of rotor 1, he would provide information (to component CSF1)
as follows:

DOF name = BETAl12089
M=C=F=0
K = [k]

When this component is added to th2 model, the coupling is carried out auto-
matically.

1.2.4 Implicit Coupling. DYSCO also couples structures through linear rela-
tionships between degrees of freedom. Certain of the component technology
modules will automatically form such relationships based on user input. A
particular module (CLC1) allows the user to input arbitrary relationships.

As a very simple example, the user could have coupled the components in Figure
2 by supplying the relationships (using DYSCO naming convention)

X2300099 - X1200ppp
X3190009 = X1209009
X320pp09 = X14099pP

instead of renaming as in Figure 3. The results of the two approaches will be
identical.

Consider the structure of Figure 3 attached to a modal model as shown in Fig-
ure 4. In the figure, ZCG 19@@ and PTCH1PPP represent the vertical displace-
ment and pitch angle at the center of mass, and QFUS11@@, QFUS12¢5 are the
modal generalized degrees of freedom of the two modes representing the elastic
structure.

14

The amplitudes of the two mode shapes at a and b are ¢1(a), ¢2(a), ¢l(b)’
¢2(b). Then, the linear relationships that couple these structures are:

X1199999 = 2CG 1999 + a * PTCHIPPP + ¢, (a) * QFUSI1PP
| + 9,(a) * QFUSI2gP (5)

X22p0090 = ZCG 18 + b * PTCH1g@P + ¢1(b) * QFUS11pP
+ ¢2(b) * QFUS12¢p ' (6)

These two relationships are all the information required for the Executive to
couple the elastic component to the rest of the system. The user may separ-
ately specify these relationships, or in this particular case, they may be
formed automatically (see description of CFM2 in Section 3).

During the formation of the transformation matrices, the degrees of freedom on
the left side of such relationships are eliminated from the system degrees of
freedom. These quantities are called "implicit degrees of freedom" in DYSCO.
In such cases, the transformation matrices contain values other than 1 and 0,
as in the simple case previously shown.

When the user supplies relationships such as Equations 5 and 6, he may select
which degrees of freedom to eliminate from the coupled system by rewriting the
equations to place those of his choice on the left side. This may require the
hand solution of a small set of algebraic equations. [If he wished to elimi-

nate the modal degrees of freedom, Equations 5 and 6 could be rewritten as
shown below.

OFUS1100 = §,(b) * X1189PP - §,(a) * X220PPPP + (- 6,(b) + 4,(a))

* 720G 1999 + (- a * $z(b) +b* az(a)) * PTCH1909

15

X2100000

Y
kZI Xx2200000
ZCG 1000 X1100000 QFUS1100
' . \ QFUS1200
PTCH1000 M - - __—
22 ’
| 3 i b L2
k X120000
Ky 1200000 22 _1 X120000
"2 TTT T Y
12
X1300000
el RIN
13
K13 _'Xl 400000 AILO0000
H'Ih ---------- M32
Figure 4. Modal Structure Added to Structure of Figure 3.

16

QFUS1200 = - al(b) * X11pp99 + 51(3) * X2200000 (- $l(b) # 51(8))
* 106 1699 + (a * §,(b) - b * ,(a)) * PTCHIPPP

where (") indicates division by 8,(a) #,(b) - 8,(a) ¢;(b).

Once the relationships are specified or automatically formed, all operations,

including the formation of the transformation matrices, are invisible to the
user.

1.2.5 Other Uses of Implicit Relationships. The linear relationships which
replace the degree of freedom on the left by the relationship on the right
have uses other than what is usually thought of as coupling of structures.
Some examples follow:

1. Eliminate a degree of freedom (dof)
X14p0pp9 = @ * (arbitrary dof)

This eliminates this dof from the equations. In this case, it
represents a cantilever constraint.

2. Change units
X14p900 = 12 * X14Fppgg
Output will be in feet, rather tihan inches

PTCH1988 = 1/L * XLPP@AAP - 1/L * 1CG pppp

PTCHEPPP will be replaced by vertical displacement at sta-
tion L.

3. Represent a mechanical linkage
BETA1100 = - 1 * BETA1200

Conversion of an articulated rotor into a teetering rotor.

17

Note that the degrees of freedom on the right do not have to be degrees of

freedom of any component. However, only one new dof may be created for each
one that is eliminated.

1.3 MODEL

The physical system which is analyzed in DYSCO (i.e., by solution modules) is
termed a "model." The model is defined by specifying component (C---) and
force (F---) technology modules and the data set (ds) to be associated with
each. The model itself is also stored in the modeling data library where the
ds is user-supplied and dm is MODEL.

1.3.1 Component, Force Definition. Each line of a model definition contains
the following information:

Component technology module name (C---)

When necessary, a "structure” or "rotor" number
ds of data for C---

Force technology module name (F---) or "NONE"
ds of data for F---.

o W N

When degree of freedom names are automatically assigned, they are tagged with
a structure or rotor number to distinguish them from degrees of freedom formed
by multiple uses of a component in a model. Structure and rotor numbers must
each be unique in any model, except in the case of a rotor control system
which must have the same number as the rotor it controls and in the case of a
damaged rotor which also must have the same number as the rotor with which it

is associated. ODuring input, only necessary data is prompted and only valid
input is allowed.

1.3.2 Model Definition. A model definition consists of one or more compo-
nent, force definitions as in the previous paragraph. Each component and force

18

may be used more than once with the same or different ds. In general, the
order is immaterial, except in special cases such as a rotor control system,
which must follow the rotor it is controlling.

The model for the system shown on Figure 4 could be as follows, including a
sinusoidal shaker acting on X21909898:

INDEX comp NO. DATA SET FORCE DATA SET
1 CSF1 COMP1 NONE
2 CSF1 COMP2 FSS1 Fx2l1
3 CFM2 1 BEAM NONE
4 CSFY COMP3 NONE

1.3.3 Model Formation. DYSCO is a command-driven, interactive program (see
Section 2 for specific details). The command NEW allows the user to create
data sets for components and forces and to create a model definition, as
above.

During the creation of a model, the Executive assures that the specified data
sets exist and that the force modules are appropriate for the specified com-
ponent; it determines if any auxiliary data sets are required (such as airfoil
tables) and if any "global data" is used (such as wind velocity).

During the execution of the command RUN, the Executive allows for temporarily
changed parameters in the data sets. The program then establishes the system
degrees of freedom and the transformation matrices, computes the component M,
C, K, F matrices, transforms them to the coupled system equations, and allows
the user to select a solution algorithm (S---) to be applied to the equations
of the model.

19

1.3.4 Model Details. Prior to the execution of the solution, the user may
obtaiun certain details of the model which may be of interest, as follows:

1. For each component, a list of all the component degrees of
freedom
A list of all the system degrees of freedom
A list of "implicit coefficients" (see directly below)

4. An optional listing of each of the system M, C, K, F constant
matrices.

4

Associated with each component degree of freedom (1, above) is an integer, n:

If n >0, the component dof is system dof number n

If n = 0, the dof has been eliminated from the model.

If n < 0, the dof has been replaced by a linear relationship to be found
in the "packed" table of implicit coefficients.

As an example of the case of n < 0, component 2 in paragraph 1.3.2 would
include the representation of Equation 6:

2 X21p0ppp X22000pp X12090p9

(4) (-5) (1)
IMPLICIT COEFFICIENTS
COEF DOF

5 1.0 2CG 1ppp

6 b PTCH1gpP

7 8,(b) QFUS11gg

8 ¢, (b) *QFUS12pp

The series starts with element 5 and ends as indicated by the * on the DOF.
The next relationship would start with element 9. In an actual case, b,
¢l(b), ¢2(b) would be numerical values.

20

1.4 USE OF DYSCO

In this general overview, some of the basic concepts regarding the theoretical
basis and the implementation were presented. Following sections include a
description of how the program is operated, details regarding all the pres-
ently implemented technology modules, and the procedure for adding new tech-
nology modules to the library.

21

2.0 OPERATION OF PROGRAM

2.1 RUN INITIATION
it

2.1.1 Beginping Execution. DYSCO 4.1 is installed on two mainframes: the
VAX under the VMS operating system and the IBM 4341 under the CMS operating
system. For both systems, all file assignments are made after DYSCO is initi-
ated; however, each has a different internal procedure for performing the
assignments and starting DYSCO execution. Although the procedures differ,
user dialogue with DYSCO is very similar.

On the VAX, DYSCO is brought into execution the same as any other program
using the VMS command RUN and the program name specified by the installation.
A1l file assignments are performed after execution begins under control of the
DYSCO program which prompts the user for required information.

On the IBM, a special "EXEC" file is executed first to prompt the user for
file information via JCL commands and second to place the DYSCO program into
execution. The user initiates a DYSCO run simply by specifying the name of
this EXEC file at the CMS level. The JCL stream initiates dialogue with the
user for file assignments and automatically places DYSCO into execution.

2.1.2 File Assignments. There are six types of files which may be assigned
to a DYSCO run: the Run Data File; User Data File(s); Sequential File(s); Plot
File(s); Load File; and Utility File.

2.1.2.1 Run Data File (RDF) - The RDF is a temporary random direct access

file available to the Executive or the user during a single DYSCO run. It is
automatically assigned to a specific logical file unit at the beginning of the
run and is initialized to null. It is used by the Executive for temporary
storage as needed; these usages are not visible to the user. The user may use
the RDF to store such data items as Model, Case, Airfoil table, and input data
for a Component or a Force Technology Module which are built and used during

the current run only and are not to be saved for a later run: This file is
referenced by the name R. Except for the null initialization and temporary
nature, the RDF is identical to the User Data File in structure, usage, and
internal manipulations by Executive utilities.

2.1.2.2 User Data File (UDF) - The UDF is a random direct access file used to
store data which is built and used during a DYSCO run and saved for a later
run. Data items such as Model, Case, Airfoil table, and input data for a Com-
ponent or a Force are stored on a UDF. The number of UDFs which may be
defined during a run is zero up to a maximum number which is an installation
parameter. At the beginning of the run, the user is prompted for the number
of UDFs, followed by a prompt for the file names. The user supplies only the
first part of the full file name; DYSCO automatically supplies an installation
dependent suffix. These files are internally assigned to sequential logical
units. For each UDF, the user is given the option to initialize the file as
null (i.e., create a new UDF), or to use and add to a file previously created
during a DYSCO run. These files are referenced by the names Ul, U2, and so
on. Usage of a UDF is strictly under control of the user; the Executive never
uses this file for other purposes. Except for the optional initialization and
permanent nature, a UDF 1is identical to the RDF in structure, usage, and
internal manipulations by Executive utilities.

2.1.2.3 Sequential File (SF) - A Sequential File is one which is not created
or maintained by the Executive. The format of this file is not standardized
and is dependent on the specific usage. It may have been created externally
to DYSCO, such as an airfoil or induced velocity table, or it may be created
internal to the DYSCO environment, but under direct control of specially
developed code in the Technology Library. The user is prompted for the number
of Sequential Files, which may be zero up to an installation parameter, fol-
lowed by a prompt for the full file name. These files are assigned sequen-
tially to logical file units. The user references these files as Sl, $S2, and
SO on.

23

2.1.2.4 Plot file (PF) - A Plot File is a permanent sequential file used to
store data gererated by certain DYSCO Solution Modules in a standardized for-
mat, but is rot created or maintained by the Executive. It is created inter-
nally and is under the direct control of the Solution Module. The number of
Plot Files which may be defined during a run is zero up to a maximum number
which is an installation parameter. The user is prompted for the number and
names of the Plot Files, but supplies only the first part of the full file
name; DYSCO automatically suppliés an installation-dependent suffix. These
files are assigned sequentially to logical file units and are referenced as
IPLOT1, IPLOT2, etc. The user can add data from different solutions to a
file, but cannot add to a file created during a previous DYSCO run.

2.1.2.5 Loads File (LF) - The Loads File is a temporary sequential file used
to store time history data prior to further processing for time history loads
calculations. It is created internally and is under the direct control of
time history Solution Modules. Only one Loads File can be defined during a
run and does not have a name specified by the user. It is assigned to a spe-
cific logical file unit and is referenced by the name ILOAD. The file is
rewound at the beginning of a time history solution; therefore, only one set
of data may be stored on it. The file is erased at the end of the DYSCO run.

2.1.2.6 Utility File (UF) - The Utility File is a temporary file available to-
the Executive during a DYSCO run which can also be used for temporary data
storage by Solution Modules. It is automatically assigned to a specific logi-
cal file unit at the beginning of a DYSCO run and is referenced by the name
IUTIL. Like the Run Data File and the Loads File, the Utility File is erased
at the end of the DYSCO run.

24

2.1.2.7 Installation Parameters -

DEVICE NAME NAME
FILE NO. _1BM _VAX
ul 1 name D41 name.D41]
U2 2 name D41 name.D41
u3 3 name D41 name.D41
U4 4 name D41l name.D41
IN 5 (input)
ouT 6 (output)

7 (punch)

Sl 8 name filetype name.filetype
S2 9 name filetype name.filetype
IPLOT] 10 name PLT1 name.PLT1
IPLOT2 11 name PLT2 name.PLT2
ILOAD 12 TEMPX LOAD TEMPX.LOAD
R 13 TEMPX D41 TEMPX.D41
IUTIL 14 TEMPXX D41 TEMPXX.D41

2.2 COMMANDS

The DYSCO Executive Control System prompts the user for information and, thus,
the primary mode of dialogue with the user is of the conversational "question
and answer" form. At the highest level of dialogue, however, DYSCO utilizes a
command mode where, in response to the query "COMMAND," the user responds with
one of the following: CASE, COPY, CRE, DEL, EDIT, LIST, LOOK, NEW, RERUN,
RUN, TOC, VAL, and QUIT. A brief description of each of these cor.ands is
given in Table 1. These high level commands indicate to DYSCO the nature of
the task to be performed, with lower level promnts being issued as needed for
additional instructions. Of these commands, those which supply the basic
modeling capabilities are NEW and RUN. The remaining commands are auxiliary
in nature and offer support to the basic capabilities.

25

TABLE 1. DESCRIPTION OF COMMANDS

COMMAND DESCRIPTION

CASE * Forms Batch File for solution to model
copy Copies DS/DM from one file to another
CRE Creates DS/AIRFOIL for airfoil table
DEL Deletes DS/DM from a file

EDIT Allows user to modify model

Allows user to modify Component/Force
input data set

LIST Prints data summary for any DS/DM
LOOK Debugging aid for files
NEW Allows user to create new model

Allows user to create new Component/
Force input data

RERUN New solution for model just run

RUN Forms equations of model and executes a
solution

TOC Table of contents of file (DS/DM des-
cription)

VAL Validates input tables for Components
and Forces

QIT Terminates DYSCO

26

2.2.1 CASE. The CASE command allows execution of a run environment created
and saved during a previous RUN or RERUN command. The user is prompted for
the Case name (the ds name). When ds/CASE is located on the data base, it is
read and the core environment is restored to readiness for solution execution.
A11 the information required for the model, coupled system, and solution input
values are contained on ds/CASE. No auxiliary or sequential files are
required for execution of the CASE.

The intent of the Case capability is to allow the user means to interactively
enter all input required to execute a solution for a model, but without the
actual execution, which could require a good deal of time. Having provided
all input, the user may then execute the solution via a batch-type run.

2.2.2 COPY - The COPY command allows an existing ds/dm to be copied to a dif-
ferent file (RDF/UDF) or to the same file. The user is prompted for the name
of the ds/dm to be copied. The Executive locates the ds/dm on the data base
and prompts the user for the destination file and the new ds name (the new dm
name is the same as the old dm name). After validating the uniqueness of the
new ds/dm name with respect to the destination file, the copy is performed.

2.2.3 CRE - The CRE command creates an airfoil table in DYSCO format as a
ds/AIRFOIL on an RDF/UDF. The input is a sequential file containing the Air-
foil Table values in format consistent with requirements given below. The
user is prompted for the sequential file (e.g., S1), the ds name, and the des-
tination file (e.g., R or Ul). The ds name must be unique with respect to
other airfoil tables on the destination file.

The FORTRAN statements used to write an airfoil table on a sequential file in
proper format prior to the DYSCO run are as follows:

REWIND NFILE
WRITE (NFILE,100) NOALFA, NOMACH, (IHEAD(I), I=1,18)

27

WRITE (NFILE,200) ({AMACH(J), ALPHA)(1),CL(I,J),CD(I,J),
CM(1,d),
I=1,NOALFA), J=1,NOMACH)

100 FORMAT (2110/18A4,8X)

200 FORMAT (7X,F6.4,F7.2,3F10.6)

The variables are defined as:

NFILE - Logical unit number of the sequential file

NOALFA - Number of angles of attack (between 0 and 65)
NOMACH ~ Number of Mach numbers (between 0 and 9)

IHEAD - 72 character user supplied description

AMACH(J) - Jth Mach number

ALPHA{I) - Ith angle of attack, deg

CL(I,J) - Lift coefficient corresponding to the Ith angle of

attack and the Jth Mach number
CD(I,J) - Drag coefficient corresponding to the Ith angle of
attack and the Jth Mach number

CM(I,J) - Moment coefficient corresponding to the Ith angle of
attack and the Jth Mach number
NOTE: The angles of attack for each Mach number are from 0 to

360. The chordwise reference is the 1/4 chord.

2.2.4 DEL. The DEL command allows a ds/dm to be deleted trom an RDF/UDF.
The user is prompted for the ds and dm names and, when the ds/dm is located on
a file, the user is given the option to delete or ignore. This provides pro-
tection against accidental deletions. If the ds/dm is found on multiple
files, the option is given for each file. If a deletion is performed on a
file, the user is given the option to compress the file. If the user intends
to perform more than one deletion on a given file, the compress option should
be taken only following the last deletion; this is for efficiency.

28

2.2.5 EDIT. The EDIT command allows two options: (1) modify a previously
formed model (ds/MODEL), or (2) modify a previously formed component or force
input data set (ds/C--- or ds/F---).

2.2.5.1 Editing a Model - By using the EDIT command, an existing model can be
edited to form a different model or to make corrections and replace the orig-

+ inal model. Once the user specifies the name of the model to be edited, the
model is located on the data base and restored to memory for editing. There
are three edit phases: (1) the change phase, (2) the addition phase, and (3}
the Global Variables update phase.

Change Phase - At the beginning of the change phase, the model is listed with
the components sequentially numbered. These sequence numbers will be used in
various edit commands. The user has the following options:

Replace a component
Delete a component

Insert a component (insertion is before sequence number specified)
List model
End change phase.

<z — — O X0
[

For the replace and insert, the user must supply the component, the ds name of
the input, the number, and the associated force. The new cohponent input
(ds/C---) and the force input (ds/F---) are assumed to exist on the data base.
However, if they are not found, the user is allowed the option to form the

- component or force input before editing is continued. After all changes have
been completed, the addition phase is entered.

» Addition Phase - During this phase, additional components may be appended to
the end of the model. For each addition, the user must supply the component,
the ds name of the input, the number, and the associated force. If the input
for the component or force is not found on the data base, the user will be
given the option to pause and form the input data set (ds/C--- or ds/F---).
After all additions have been made, the user is given the option to accept the

29

additions as correct. If not accepted, all the additions are eliminated with
the model being restored to its pre-additions status. The process of allowing
components to be added to the model is begun anew. This process continues
until the user accepts the additions or specifies no additions are to be made.
Upon completion of the addition phase, the new model is validated for consis-
tency.

Global Varjables Update Phase - After the new model has been validated, any
changes to Global Variables may be performed. If there are no Global Vari-
ables required for the new model, then this phase will be bypassed. If there
are Global Variables required, then there are two possible situations:

1. The set of new Global Variables is identical to those in the
original model. The user will be given the option to either

keep the original values unchanged or reenter the entire set of
values.

2. The set of new Global Variables is different from those
required for the original model. The entire set of old values
will be erased from memory and the user will be prompted for
values for the entire set of new variables.

Upon completion of these three Edit phases, the edited model is considered
complete. The user will be prompted for a new data set name for the model and
the save file. If the new ds/MODEL and save file are the same as the orig-
inal, the user will be asked to verify that replacement should take place.
For a replacement, the original ds/MODEL is deleted, the file is compressed,
and the new ds/MODEL is written to the file. There are no restrictions on the
new ds name and new file except that ds/MODEL must not currently exist on the
file (except for a replace).

2.2.5.2 Editing a Component/Force Input Data Set - By using the EDIT command,
an existing input data set for a component or force (ds/C--- or ds/F---) can
be modified to form a different data set or replace the original data set. An

30

understanding of several concepts of an input data set is important for effec-
tive usage of the EDIT capability.

2.2.5.2.1 Edit concepts.

List of Possible Input Variables - Each component/force has associated with it
a full Tist of input variables which may be required for any particular usage.
A .component/force may give no options to the user and, thus, may require
exactly the same group of variables each time it is used. .On the other hand,
a component/force may give the user several representational options; and,
depending on which options the user selects, the group of variables required
may change accordingly. Although the specific requirements may change from
usage to usage, each variable which could possibly be required is included in
the full list. The list is sequential and is always processed in a sequential
fashion.

Variable Description - Each variable in the list has descriptors such as type,
properties, existence criteria, range constraints, and override range con-
straint option:

Type - The variable type may be an integer, real, character string,
degree of freedom name (i.e., composed of 4-character name and inte-
ger), yes/no (i.e., "Y" or "N"), name of an airfoil table, or
sequential file description.

Properties - Variables have associated "properties" such as size
(i.e., vector or matrix size), whether it is an increasing or
decreasing vector, or whether the elements in a vector are unique.

Existence Criteria - Each variable has zero or more conditions
which, for a particular usage of the cumponent/force, must be satis-
fied in order for the variable to "exist." If a variable exists,
then the user must supply an input value. If it does not exist,
then an input value is not needed and the variable is ignored.

31

Range Constraints - If a variable does require a value, then the
user-supplied value(s) must satisfy zero or more conditions called

range constraints. A simple example of a condition is "greater than
0."

QOverride Option - The range constraints for some variables may be
absolute and must not be violated; for others, these constraints may
merely be guidelines for a user. Thus, some variables have an
"override" option associated with them. [If the user supplies an
input value which violates the range constraints, then an option
will be given to override these constraints and accept the input.

List of Input Values - For any usage of the component/force, some of
the variables in the full list of possible variables will "exist"
(i.e., existence criteria are satisfied) and, thus, have values
while others may not exist and have no value. A Tlist of the input
values will appear to the user as a sequentially numbered list of
variables which have values. The user should think of this list of
existing variables and values as being part of the full list of var-
iables where "exist" bits are turned on or off as appropriate.
Thus, the printed list is a result of extracting from the full 1list
only those variables with the "exist" bit turned on.

2.2.5.2.2 Edit passes.

Multiple Passes - Editing a component/force input data set is performed during
a "pass" where an old list of input values is changed to produce a new list of
input values. The user may perform multiple passes to produce the desired
list of input values to be saved. At the beginning of each pass, there is an
old 1ist of values and a new list of values (which is empty). The old list is
sequentially numbered with the first "existing" variable being 1, the second
being 2, and so on. As variables are changed, a new list is built so that at
the end of a successful pass there is a complete new list of input values.
When the EDIT command is initiated and the first edit pass is begun, the orig-
inal input values stored on the ds/C--- or ds/F--- become the old list. At

32

the end of a pass, the user is given the option to continue with another pass
(the new list from this pass becomes the old list for the next pass), start
the current pass at the beginning (discard the new list), start entirely over
with the original input, or terminate the pass process (the user can then save
the new list of input).

Sequential Changes - During a pass, the user must change variables in the old
list sequentially and in order. For example, variable 2 must be changed
before variable 10. A "pointer" will always point to the last variable in the
old Tist which the user changed. Thus, after the user has completed changing
one variable and the Editor is waiting on the next user instruction, the
pointer is pointing to a variable in the full 1ist of possible variables which
has its "exist" bit turned on. As the user requests different variables to be
changed, the pointer is used to step through the list from the last variable
changed under user request to the next variable requested to be changed. Each
variable in the old list is inspected along the way to determine if it should
have a value in the new list and, if so, what value it should have. Unless
user action is required, the inspections and subsequent entries in the new
1list are automatically performed and are invisible to the user. After each
intervening variable in the list has been inspected and processed, and the
pointer reaches the variable which the user requested to be changed, the user
is prompted for a new value, along with the message, "change due to user
request." The situation could arise, however, that the requested variable no
longer satisfies its existence criteria and, thus, cannot have a value in the
new list; a message will be printed for the user. The input and range con-
straint validation procedure is identical to that used when building the orig-
inal input data set via the NEW command.

Automatic Validations - The integrity of the new input data set being built is
insured by automatic validations during the editing process. As the pointer
(described above) steps through the intervening variables between the last
user-changed variable and the next variable to be changed, the existence cri-
teria and the range constraints are evaluated using the new list of values,
built thus far, as needed (e.g., satisfying references in conditions or used

33

for dimensioning). As each variable is inspected, there are several possibil-
ities:

1. The variable, perhaps, does not have an old value and should
not have a new value.

2. The variable did not have an old value, but a new value is
required.

3. The variable did have an old value, but a value in the new list
is not needed.

4. The variable did have an old value, it does need a value in the
new 1ist, and the old value is still acceptable.

5. The variable did have an old value, it needs a value in the new
list, but due to other changes, the old value no longer will
meet the range constraints or the dimensioning requirements
have changed for a vector or matrix.

If a value is not needed in the new list, or if the old value is still accep-
table, then appropriate entry is made for the variable in the new list. How-
ever, if a new value is needed (i.e., cases 2 and 5), then the user will be
prompted for a value with the message "change due to previous edits."

Matrix Changes - A matrix in the old list which exists, and thus, has values,
can be edited in either of two ways: (1) input the entire matrix or
(2) change specified items. However, the option to choose and the way in
which items are specified vary stightly with the type of matrix involved.
There are, in general, four types of matrices: null, diagonal, symmetric, -and
general. If the matrix has an old type of null, then it makes no sense to
offer an item edit; for others, the option is given. If the user selects to
input the entire matrix, the type of matrix can be changed and the user is
prompted for the new values. If the user selects to perform an item edit, the
type of matrix cannot be changed and the prompt message will be appropriate
for the type of matrix involved. If the matrix is diagonal, the user will be
asked only for the row number and new value. For a symmetric matrix, the user
will supply the rce and column number and the new value; the symmetric element
in the matrix will automatically be changed. For a general matrix, the user
will supply the row and column number and the new value. Several item edits

34

Lw\

can be performed on a matrix. The same mat:ix item can be changed several
times during the same edit sequence; the last change is used. Validations on
a matrix are made after all item changes have been completed.

Pass Commands - During a pass, the following commands are available:

0 - List old values. The complete list of existing variables
sequence numbers, brief descriptions, and values is printed.

E - List new edited values. The new sequence numbers, brief des-
criptions, and values for existing variables built thus far
will be printed.

S - List sequence numbers and variable names for old list.

C - Change a variable name. The user will be prompted for the
sequence number of the variable (in old list).

N - None. Consider pass completed. Pointer steps to end of old
list.

Q - Quit. The current pass will be immediately terminated in an
error condition. The user will have the option to start the
pass again, to start with original input, or quit edit com-
pletely (without any option to save changes).

2.2.5.2.3 Edit examples. Two examples are given in Figures 5 through 11
which illustrate several of the edit features. The arrow in the examples in-
dicates a user response to a prompt message. Example 1 illustrates dialogue
following initiation of the EDIT command, changing a variable value, the autn-
matic prompt for a variable which did not exist in tho old input list, and the
automatic prompt for a new value which did exist in the old list but is no
longer valid. Example 2 illustrates changing a null matrix, an item edit of a
symmetric and a diagonal matrix, and use of the Quit command.

2.2.6 LIST. The LIST command allows the contents of any type of ds/dm to be
listed in a readable format. These include ds/MODEL, ds/AIRFOIL, ds/C---,
ds/F---, or ds/CASE. The user is prompted for the ds and dm names.

35

-

->

-

-

-

EDIT
EDIT MODEL (Y OR N)
N
COMPONENT, FORCE, OR N
CESI
DATA SET
PATI
LIST EDIT COMMANDS (Y OR N)
Y
EDIT BASE OR GLOBAL VARIABLES
VALUES TO BE EDITED ARE VIEWED AS A SEQUENTIAL LIST
MULTIPLE PASSES ARE PERFORMED ON THE LIST
DURING EACH PASS, VARIABLES MUST BE CHANGED SEQUENTIALLY
EDIT COMMANDS ARE:
LIST OLD VALUES
LIST NEW EDITED VALUES
LIST SEQUENCE NUMBERS AND VARIABLE NAMES
CHANGE A VARIABLE NAME
NONE. PASS COMPLETED
- QUIT (IGNORE CURRENT PASS)
NOTE: FOR EACH PASS, VARIABLE SEQUENCE NUMBERS MAY BE DIFFERENT.
IF THERE IS ANY QUESTION,
GET A LIST AT BEGINNING OF EACH PASS

OoOZOUVMO

CURRENT DESCRIPTION FOLLOWS

TEST CESI

CHANGE DESCRIPTION (Y OR N)

N

NEXT EDIT COMMAND

0
1 MCDF - # OF DOF-EXCEPT BASE= 4
2 CDFLI - (DOF) DOF NAMES

"~ MAAA 1 BBBB O CCCC O DDOD 1

3 BASE - EXISTNCE OF BASE DOF= NO
4 Cl - UPPER DAMPING COEFF = 5.00000E-01
5 C2 - LOWER DAMPING COEFF = 1.00000F-01
6 Kl - UPPER SPRING COEFF = 2.00003%+00
7 K2 - LOWER SPRING COEFF = 2.00000E+00
8 DELTI - UPPER GAP SIZE = 3.00000E+00
9 DELT2 - LOWER GAP SIZE = 4.00000E+00

Je Je Je de I Fe e vie vk e e e e e e e e e e e v de vk e v o e e vk e e e vk v ok vk s ok e ke e v e e S ok e ke e ok ok e vk e e e ok e e de ok ok ke ok

Figure 5. EDIT Example 1 - Setup.

36

P

NEXT EDIT COMMAND
- C

SEQUENCE NUMBER OF VARIABLE TO BE CHANGED
- 4
» S e

4 Cl START CHANGE DUE TO USER REQUEST
€1 (REAL)

UPPER DAMPING COEFF
* ENTER 1 REAL VALUE
?

+

-+ 8

NEXT EDIT COMMAND
+C

SEQUENCE NUMBER OF VARIABLE TO BE CHANGED
-8

8 DELTI START CHANGE DUE TO USER REQUEST

DELT1 (REAL)

UPPER GAP SIZE
ENTER 1 REAL VALUE
?

-8
NEXT EDIT COMMAND

- N
EDIT PASS 1 SUCCESSFUL. LIST NEW VALUES (Y OR N)
-+ Y
1 MCDF - # OF DOF-EXCEPT BASE= 4
2 CDFLI - (DOF) DOF NAMES
AAAA 1 BBBB O CCCC 0 DDDD 1
3 BASE - EXISTNCE OF BASE DOF= NO
4 Cl - UPPER DAMPING COEFF = 8.00000E+00
5 C2 - LOWER DAMPING COEFF = 1.00000E-01
6 Kl - UPPER SPRING COEFF = 2.00000E+00
" 7 K2 - LOWER SPRING COEFF = 2.00000E+00
8 DELTI - UPPER GAP SIZE = 8.00000E+00
9 DELT2 - LOWER GAP SIZE = 4.00000E+00

e Je e e e e e e e % e e e e e e e de e I g e vk e Ik e vk e e e e e e Ik Sk e v ke e e e e e e ke e e e g e e ok e e gk ok ok ok ko de ke de ek

I SELECT OPTION
1 - EDIT COMPLETE
2 - RESTART THIS EDIT PASS
3 - RESTART AT BEGINNING WITH ORIGINAL VALUES
4 4 - CONTINUE WITH NEXT PASS
NEXT EDIT COMMAND

Figure 6. EDIT Example 1 - Change Values.

37

+ C
SEQUENCE NUMBER OF VARIABLE TO BE CHANGED
+3
3 BASE START CHANGE DUE TO USER REQUEST
BASE ~ (YORN)
EXISTNCE OF BASE DOF
ENTER 1 Y OR N VALUE
"
NEXT EDIT COMMAND
- N
NEW CDFLBi START CHANGE DUE TO PREVIOUS EDITS
CDFLBI (DOF)
BASE DOF NAME
ENTER 1 DOF VALUE (Ad4,14)

UPPER SPRING COEFF
LOWER SPRING COEFF
UPPER GAP SIZE 8.00000E+00
10 DELT2 - LOWER GAP SIZE 4.00000E+00

s de v Je I 7 e e e e Fe Ik e fo 7 g e e de d e de o de de e e de de de e de e e e e A g e e de T de de e e e e e e e e de de g de o de Ko ke ok ok e de ke ke kedke

2.00000E+00

c2 - LOWER DAMPING COEFF
. 2.00000£+00

~ AAAA
EDIT PASS 2 SUCCESSFUL. LIST NEW VALUES (Y OR N)
-y
1 MCDF - # OF DOF-EXCEPT BASE= 4
2 CODFLI - (DOF) DOF NAMES
AAAA 1 BBBB 0 CCCC O DDDD 1
3 BASE EXISTNCE OF BASE DOF= YES
4 CDFLBI BASE DOF NAME AAAA 1
5 Cl UPPER DAMPING COEFF = 8.00000E+00
6 1.00000E-01
7
8
9

n K n nnnn

SELECT OPTION
1 - EDIT COMPLETE
2 - RESTART THIS EDIT PASS
3 - RESTART AT BEGINNING WITH ORIGINAL VALUES
4 - CONTINUE WITH NEXT PASS
-4

NEXT EDIT COMMAND

Figure 7. EDIT Example 1 - Automatic New Variable.

38

= C
SEQUENCE NUMBER OF VARIABLE TO BE CHANGED
-1
1 MCOF START CHANGE DUE TO USER REQUEST
MCDF (INTEGER)
OF DOF-EXCEPT BASE
ENTER 1 INTEGER VALUE
- 2
NEXT EDIT COMMAND
- N

2 CDFLI START CHANGE DUE TO PREVIOUS EDITS

CDFLI (DOF)

UPPER SPRING COEFF
LOWER SPRING COEFF
UPPER GAP SIZE 8.00000E+00
10 DELT2 - LOWER GAP SIZE 4.00000E+00

e e e e e e e % v e Ik vk ko ke e e e vk e v e e e e ok vk ok sk ek e sk ok vk ol sk dk e dhe e e e sk vk sk ok e ok ok ok ok sk ok ok e ok ok

2.00000£+00
2.00000E+00

DOF NAMES
ENTER 2 DOF VALUES (A4,14) ONE PER LINE
= AAAA]
- BBBB 1
EDIT PASS 3 SUCCESSFUL. LIST NEW VALUES (Y OR N)
-+ Y
1 MCDF - # OF DOF-EXCEPT BASE= 2
2 CDFLI - (DOF) DOF NAMES = AAAA] BBBB 1
3 BASE - EXISTNCE OF BASE DOF= YES
4 CDFLBI - BASE DOF NAME = AAAA]
5 Cl - UPPER DAMPING COEFF = 8.00000E+00
6 C2 - LOWER DAMPING COEFF = 1.00000E-01
7 - =
8 = =
9 - =

SELECT OPTION
1 - EDIT COMPLETE
2 - RESTART THIS EDIT PASS
3 - RESTART AT BEGINNING WITH ORIGINAL VALUES
4 - CONTINUE WITH NEXT PASS
-1
EDITED CESI TO BE SAVED (Y OR N)
-y
DATA SET FOR EDITED CES1
+ PATI
SAVE FILE FOR EDITED CESI
- Ul
VERIFY ORIGINAL CES1 TO BE REPLACED (Y OR N)
- Y
EDIT COMPLETE
COMMAND

Figure 8. EDIT Example 1 - Automatic Prompt New Value.

39

1 NCDF - NUMBER OF DOF = 3
2 CDFLI - (DOF) DOF NAME
AMAA] BBBB 2 cccc 3
3 CM - (REAL) MASS MATRIX VALUES
NULL MATRIX
4 CC - (REAL) DAMPING MATRX VALUES
SYMMETRIC MATRIX (LOWER TRIANGLE PRINTED)
ROW 1
1.00000E+00
ROW 2
2.00000E+00 2.00000E+00
ROW 3
3.00000E+00 3.00000£E+00 3.00000E+00
5 CK - (REAL) STIFFNESS MTRX VALUES

DIAGONAL MATRIX (DIAGONAL VALUES PRINTED)

1.00000E+00 2.00000E+00 3.00000E+00
6 CF - FORCE VECTOR VALUES
1.00000E+00 2.00000E+00 3.00000E+00

I e e e e e v e I vk e v e e de e e e ek I e vk e e e v e v e de s e e e ok sk sk e sk e e ok e e e e e g ke e de de e e ke d ok de ok ok ke ke ok

NEXT EDIT COMMAND
C

SEQUENCE NUMBER OF VARIABLE TO BE CHANGED
3

3 (M START CHANGE DUE TO USER REQUEST

CM (REAL)
MASS MATRIX VALUES
TYPE MATRIX
(0=NULL), (1=DIAGONAL), (2=SYMMETRIC), (3=GENERAL)
1

INPUT 3 DIAGONAL REAL VALUES
’

4.5 4.54.5
NEXT EDIT COMMAND
E
1 NCDF - NUMBER OF DOF = ' 3
2 CDFLI - (DOF) DOF NAME
AAAA 1 BBBB 2 CCCC 3
3 CM - (REAL) MASS MATRIX VALUES

DIAGONAL MATRIX (DIAGONAL VALUES PRINTED)
4.50000E+00 4.50000£E+00 4.50000E+00

W I e e e e e e v e e e de e o e e e g e v b v e ok e v e e de e e de ok e vk e e e de e Sk e e e e ok e e ok v e de o ok e e ok ek ke ok ok ok ek

Figure 9. EDIT Example 2 - Null Matrix.

40

NEXT EDIT COMMAND
-C
SEQUENCE NUMBER OF VARIABLE TO BE CHANGED
- 4 .

4 CC START CHANGE DUE TO USER REQUEST

cc (REAL)

, DAMPING MATRIX VALUES
' ITEM EDIT (Y OR N)

Y

SYMMETRIC MATRIX

ROW NUMBER
i éOLUMN NUMBER
) ENTER 1 REAL VALUE(S)
-4

ELEMENT (3, 1) CHANGED ALSO
ANOTHER ITEM (Y OR N)
- Y
SYMMETRIC MATRIX
ROW NUMBER
+3
COLUMN NUMBER
2
ENTER 1 REAL VALUE(S)
”

~ 4.5
ELEMENT (2, 3) CHANGED ALSO
ANOTHER ITEM (Y OR N)

- N
NEXT EDIT COMMAND
- E
1 NCOF - NUMBER OF DOF - 3
2 CDFLI - (DOF) DOF NAME
v © MAA 1 BBBB 2 CCCC 3
3 M - (REAL) MASS MATRIX VALUES
DIAGONAL MATRIX (DIAGONAL VALUES PRINTED)
4.50000E+00 4.50000E+00 4.50000E+00
4 CC - (REAL) DAMPING MATRX VALUES
: SYMMETRIC MATRIX (LOWER TRIANGLE PRINTED)
ROW 1 .
1.00000E+00 ,
ROW 2 |
2.00000E+00 2.00000E+00
ROW 3

4.50000E+00 4.50000E+00 3.00000E+00

e de Je Jo e Jo de e e e vk e Je de e e de e e S v e e vk e e e e de e ke e e e v ke e ke s e de g e e e I de e e e e de gk ok ke e ok ok o ek ke ke de ok ok

Figure 10. EDIT Example 2 - Symmetric.

41

NEXT EDIT COMMAND

- C
SEQUENCE NUMBER OF VARIABLE TO RE CHANGED
-5
5 (K START CHANGE DUE TO USER REQUEST
cK (REAL)

STFFNESS MATRIX VALUES
ITEM EDIT (Y OR N)
- Y
DIAGONAL MATRIX
ROW NUMBER

2
ENTER 1 REAL VALUE(S)
?

- 4.5
ANOTHER ITEM (Y SR N)
- N
NEXT EDIT COMMAND
-
1 NCDF - NUMBER OF DOF = 3
2 COFLI - (DOF) DOF NAME
AAAA 1 B88BB 2 CCCC 3
3 CM - (REAL) MASS MATRIX VALUES
DIAGONAL MATRIX (DIAGONAL VALUES PRINTED)
4.50000E400 4.50000E+00 4.50000E+00
4 CC - (REAL) DAMPING MATRX VALUES
SYMMETRIC MATRIX (LOWER TRIANGLE PRINTED)
ROW 1
1.00000E+00
ROW 2
2.00000£+00 2.00000E+00
ROW 3
4.50000£E+00 4.50000€+00 3.00000E+00
5 CK - (REAL STFFNESS MTRX VALUES
DIAGONAL MATRIX (DIAGONAL VALUES PRINTED)
1.00000E+00 4.50000£+00 3.00000E+00
e dk e de s 3 ok e e e g v e e o e e o v s sk e e e v e e o ol e e e e e e sk e e e e e o o e e e e v e o e e e e e e ke e ok e ok ok ok ko
NEXT EDIT COMMAND
- QuIT
ERROR -INVALID COMMAND QUIT VALID COMMANDS ARE :
0 E S Q N C -~
NEXT EDIT COMMAND

Q
ERROR - IN EDIT PASS FOR PAT1 /CSF1

SELECT OPTION -3
1 - EDIT COMPLETE
2 - RESTART THIS EDIT PASS
3 - RESTART AT BEGINNING WITH ORIGINAL VALUES

Figure 11. EDIT Example 2 - Diagonal.

42

2.2.7 LOOK. The LOOK command provides information about an RDF/UDF and is
useful as a debugging aid. The user is prempted for the file (e.g., R or Ul).
For this file, the followiig information is given:

Number of ds/dm entries
First record number of the first ds/dm
Next available record on the file

For each ds/dm, the following information is given:

ds/dm name
First record number
Number of records
Option to print all records for the ds/dm
(only 72 characters of each record are printed)

2.2.8 NEW. The NEW command allows two options: (1) the formation of a new
model or (2) the formation of new component and/or force input data sets.

2.2.8.1 New Model - The NEW command may be used to form a new model
(ds/MODEL) on a specified RDF/UDF. The new model will be primarily a confiqu-
ration of components and any associated forces. Auxiliary information implied
by the components and forces selected will also be a part of the new model.

The user is prompted for each component to be included in the model and the ds
name for its input. The order of specification of components is arbitrary
(except for the CCEl and CCEO components, which must be specified after the
rotor they control has been specified). The user may then be prompted for a
"component number." Some physical components of the model must be identified
by an integer (1 - 9). Rotors and other structures may each have a separate
set of numbers. Thus, there may be a rotor number 1 and a structure number 1.
A special case is the rotor control system (represented by CCEl or CCEO) which
must have a component number identical to that of the rotor it controls. If
appropriate, the user is prompted for the force to be applied and the ds name

43

for its input. The data base is searched for the component input, ds/C---,
and for the force input, ds/F---. If multiples are found, the user selects
the proper file. If the component input is not found, then the user may sup-
ply data to form a new component before proceeding with forming the model. If
the force input is not found, then the user may likewise form a new force
befora proceeding. If the user elects this option, the process is identical
to that described below for forming component/force input via the NEW command.
For each force specified, ds/F--- will be inspected for any auxiliary
ds/AIRFOIL and sequential file requirements; these requirements become part of
the model.

The Global Variable requirements for the model are also determined. Each com-
ponent and force has an associated list of global variables which are required
for model execution. For each component and force specified for the model,
the Executive inspects its associated list and forms a "pooled" set of all
global variables required. Each global variable may have zero or more associ-
ated conditions which must be satisfied in order for that variable to actually
require a value. These conditions, or existence criteria, are evaluated for
each variable, and for those whose conditions are satisfied the user is promp-
ted for a value(s). Each variable may also have range constraints and, if so,
the input value must satisfy these constraints.

If invalid data is detected, the user is given the opportunity to reenter the
data. The set of global variables and their values become part of the model.

Upon completion of the model, a summary is printed and the model is written to
the RDF/UDF. This ds/MODEL may be used for a solution method execution in a
subsequent RUN command. It may also be listed via the LIST command.

2.2.8.2 New Component/Force Input Data Set - Input data for one or more com-
ponents and/or forces may be formed by the NEW command. The result of a com-

ponent formation is the creation on an RDF/UDF of ds/C--- which contains the
input for the component. The result of a force formation is similarly the

44

creation of ds/F--- which contains the input for the force. The user is
prompted for the name of a component or force. After the name is validated,
the user is prompted for all other information and input data needed. The
process of prompting the user for the required input is described in the fol-
lowing paragraph.

Each component and force has associated with it a sequential list of base var-
iables; this list is a pool of all variables which are "local" in nature to
the component or force and which can be required for any particular definition
or usage. Each variable has associated with it zero or more conditions which
must be satisfied in order for the variable to be required or "exist;" these
are called existence criteria. If a variable has any existence criteria spe-
cified, the condition(s) generally involve the value given to a variable ear-
lier in the list or the existence of an earlier variable. The list of base
variables is processed sequentially, starting with the first and completely
processing each one in turn before continuing to the next variable in the
list. In processing a variable, if the existence criteria are satisfied, the
user will be prompted for a value(s). If not, the variable is ignored and
processing continues with the next variable in the list. Each variable also
has associated with it zero or more range constraints, which are conditions
which must be satisfied in order for the user input to be accepted. All user-
supplied data is validated against these constraints with reentry options
given when invalid input is encountered. When the 1ist of base variables has
been completely processed, the set of variables which satisfied their exis-
tence criteria and their values are considered to be the input for the compo-
nent or force being defined. These variables and their values are stored on
ds/C--- or ds/F---. More detailed information about the input process is pro-
vided in paragraph 2.2.5.2. The resulting component or force data set can be
used in model formation via a subsequent NEW command. It may also be listed
via the LIST command.

2.2.9 RERUN. The RERUN command allows a model just RUN to be efficiently run
again with a different solution method or with the same solution method, but

45

different solution input parameters. The iuformation in memory which was
"left over" from the just completed RUN command is utilized, thus allowing the
model and coupled system setup phdases to be bypassed. Since these setups may
require a good deal of disk I/0, bypassing improves efficiency.

2.2.10 RUN.

Run Setup - The RUN command allows a solution method to be specified for a
model and either executed or saved for later execution. The user is prompted
for the name of the model (i.e., the ds name). The model specified (ds/MODEL)
is located on the data base. If found on multiple files, the user selects the
proper file. It is read into memory and the data base is searched for all
ds/dm requirements (component and force inputs, auxiliary airfoil tables). If
any are found on multiple files, the user makes the selection. For any
sequential file requirement, the user is prompted for the file (e.g., S1).
After satisfying the file requirements, a list of the model, including any
global variable values, is given.

Temporary Edits - Following this initial setup, the user is given the option
of temporarily editing the global variables and also the input for any compo-
nent or force. Any changes made in this temporary fashion will be active only
until completion of the RUN command (and any immediately executed RERUN). The
original data stored with the model or as component or force input will not be
affected by a temporary edit. Full editing power obtained with the command
EDIT is available to the user during a RUN edit, except with regard to auxil-
iary airfoil tables and sequential files which may be required by a force. As
noted above, the airfoil table and sequential file requirements for the model
have already been processed prior to RUN editing and additional requirements
cannot be handled properly. Thus, any changes to the input data for a force
which result in an additional airfoil table or sequential file being required
are not allowed. If this occurs, the current edit pass will be abandoned and
the user will be given the option to return to an earlier edit pass or tLermi-
nate. On the other hand, any changes to the input data for a force which
result in an airfoil table or sequential file no longer being required are

46

acceptable (although the Executive has processed these requirements earlier
and insured their availability, they will be unused during the RUN). If this
situation occurs, the user will be informed and will be warned that it will be
impossible for these requirements to be reactivated by a subsequent edit pass.
If the user did not intend for this situation to occur, the current edit pass
should not be accepted and the user should start the current edit pass over.
These edited values are used in the subsequent coupling process.

Coupling and Solution - Once all temporary editing is completed (if any), the
Executive initiates the coupling process and the coupled system matrices (con-
stant) are formed. Following this formation process, the option is given to
list the details and matrices. A Solution may then be specified and the user
is prompted for the input. The user may choose the option of saving the solu-
tion environment as a Case (see CASE command) with a snapshot of relevant
parts of the current memory state being saved as a ds/CASE on an RDF/UDF.
Even if the Case option is chosen, the user is also given the option to exe-
cute the Solution immediately.

2.2.11 T0C. The TOC command prints a partial or complete Table of Contents
for the RDF, any UDF, or the entire data base. The user is prompted for a
file, a ds name, and a dm name. The character * is a "wild card" response for
this command and, when specified, is interpreted as "all." The user can use
combinations of * with other responses to perform specific searches or com-
plete TOCs of the entire data base. For each ds/dm printed, a description is
also given.

2.2.12 VAL. The VAL command validates various input tables for installed
Technology Modules and is a critical debugging and installation aid for new
technology. The following tables are automatically validated:

Global Variables Table (IGTAB in /XBG/)
Global Constants Table (IGCTAB in /XBG/)

47

For each installed component:

Base Variables Table (IBTAB in C---I)
Global Variables Selection Table (IGVTAB in C---I)

For each installed force:

Base Variables Table (IBTAB in F---1I)
Global Variables Selection Table (IGVTAB in F---T1)

The construction of these tables is analyzed with respect to a variety of cor-
rectness rules such as syntax, references to variables of correct type, table
entry length, and overall table dimension. The validations performed are
detailed and quite encompassing. As each table is validated, a message is
printed that it is "ok" or that it is in error. In the case of error, de-
scriptive information is provided. Since a change in the Global tables can
have far-reaching impacts on various modules, a full sweep of the tables is
required to insure system integrity.

2.2.13 QUIT. The QUIT command terminates the DYSCO run.
2.3 OQPERATIONAL SCENARIO

Basic Modeling Scenario - DYSCO is a "domain" executive control system de-
signed to support the basic modeling scenario shown in Figure 12. The under-
lying process of this scenario is the sequence of steps which a design
engineer would take to perform a task in the domain of dynamic structural
analysis. First, the engineer would define the component(s) and the force(s)
representations, followed by defining a model composed of these components and
forces. After the model has been defined, the coupled system would be formed
and the input parameters for a solution method would be defined. The last
step would be to execute the solution. These steps represent the "ideal" sce-
nario where only one pass through the process would accomplish the analysis
goals. Of course, this is rarely the case in reality where backtracking, mod-
ifications, and iterations are an assumed part of a design task. This sequen-
tial representation is useful, however, in understanding the role of the DYSCO

48

USER INPUT

~
t
" -
-

o] DEFINE

PROCESS COMMAXD

\!

o
(=1
~
-

INPUT

ot DEFINE

COMPONENT NEW

Y\

FORCE

FORCE

DEFIRE

DESCRIP.

\

1 MoDEL

NEW

RDF /UDF

0S/C---

DS/Feen

DS/MODEL

N
- —— ————‘ RUN j =4

Figure 12.

7 DS/CASE

Modeling Scenario and Command Relationship.

49

FORM
COUPLED
SYSTEM

- ——)
DEF INE PROMPT OPTIOM a
SOLUT 1 ON

L < =

1 CASE ol

EXECUTE
SOLUT JON

modeling commands and how they can be used effectively in iterative design
tasks.

Basic Modeling Scenario and Command Relationship - Of the DYSCO commands dis-
cussed previously, only four are considered as basic modeling commands: NEW,
RUN, RERUN, and CASE. The other commands provide support functions (e.g.,
editing, copying) for the modeling task. The relationship of the modeling
commands to the basic modeling scenario is shown in Figure 12. Of these, only
the NEW and RUN commands are essential in performing a design task. RERUN and
CASE can be used to improve efficiency.

NEW - NEW provides for defining components, forces, and models. For
a component or force, the user is prompted for all input which is
validated and stored on a file as ds/C--- or ds/F---. For a model,
the user specifies the names of these already-built component/force
input data sets to form the model. These may be specified in any
order (except restrictions noted in paragraph 2.2.8.2). However, if
they have not previously been built, the user will be allowed to
pause model formation and build these data sets.

RUN - Once a model has been built, RUN provides for forming the

coupled system for this model, defining the solution, and executing
the solution.

RERUN - RERUN allows the user to use the same model and execute dif-
ferent solution methods (or the same solution method with different
input parameters) in an efficient way. If the model is used to form
the coupled system and a solution method is executed, a second solu-
tion method can be immediately executed without going through the

coupling process a second time. This can be repeated for several
different solution methods.

CASE - The CASE capability allows the user to perform everything
interactively in the design task, except actually executing the solu-
tion, which may be computationally intensive and unsuited for the
interactive setting. In a RUN or RERUN command at the point where

50

the solution method and its input parameters have been defined, aill
input data stored on files (e.g., component input, airfoil tables)
has been read and digested by the system; everything needed for solu-
tion execution is in memory. A prompt option is given and the user
may elect to snapshot the memory environment and store it on a
ds/CASE. The user may later resume execution at this snapshot point
via the CASE command in a batch-type environment.

Basic Operational Scenario - The basic operational scenario in which a design
task is performed in DYSCO is a three-step procedure using only NEW and RUN:

1. Buiid Component and Force Input - The NEW command is executed
to build the input data sets for each component which is
planned to be used in a model. NEW allows the user to build an
unlimited number of components and forces without re*urning to
the higher command level. Thus, input data sets for all the
forces planned for the model are also built. These can be
saved on the same file or separate files at user discretion.

2. Build Model - The NEW command is executed to build the model.
The names of the components and forces and their input data
sets are specified by the user. The order of specification is
not related in any way to the order in which the input data
sets were built. The only requirement is that the files which
contain the data sets must be attached to the current DYSCO
run. Each force input data set is inspected to determine any
auxiliary airfoil table requirement or sequential file require-
ments. These requirements are printed for the user at the end
of the model formation. The user may save the new model
(ds/MODEL) on any RDF/UDF.

3. Execute Solution - After the model is built, the RUN command is
executed. The user must ensure that all component and force
input data sets and all airfoil table (ds/AIRFOIL) and sequen-
tial file requirements are attached to the current DYSCO run.

51

The coupled system is formed and the user specifies the solu-
tion method to be executed. The user is prompted for all solu-
tion input data and the solution is executed. At various
points during the RUN, the user is given various options for
temporary editing of component/force inpdt data sets, for
printing coupled system details and matrices, and for executing
or saving the solution environment.

3.0 INSTALLED TECHNOLOGY MODULES

This section contains complete descriptions of all the technology modules
available for use. Each has a name of four characters, as follows:

C--- - Component
F--- - Force
$--- - Solution

For each type of technology module, the 2nd and 3rd characters are descrip-
tive and the 4th character is-an arbitrary integer which implies a level of
complexity (9 being the most complex).

3.1 COMPONENT TECHNOLOGY MODULES

A component module represents an algorithm for computing mass, damping, stiff-
ness matrices, and a force vector for a given formulation of a set of second
order differential equations. In addition, degrees of freedom and linear
relationships between degrees of freedom are defined.

Except as specifically noted in this description, the following characteris-
tics apply to all component technology modules:

A11 degrees of freedom are optional.

Any combination of components is valid in a model.

Each component may be used more than once in a model.

The order of components is arbitrary.

Structure or rotor numbers are assigned in model definition for com-
ponents which require them.

Structure and rotor number must each form a unique set in any model.

During interactive input, the FORTRAN name of the parameter and a descriptive

message are displayed. Only required data, based on previous input, is
requested. Certain parameters have range constraints. If these are not

53

satisfied, a message will be displayed requesting a reentry. 1In certain
cases, the user will have an option to override the formal constraint.

3.1.1 CFM2 - Fuselage, Modal. CFM2 is a modal representation of a thin elas-
tic structure. A three-dimensional fuselage-like structure may be modeled
relative to coincident principal axes and elastic axes of the structure.

3.1.1.1 Primary Features -

Rigid Body Modes - Up to three translational and three rotational
degrees of freedom defined in a Cartesian coordinate system whose
origin is the center of gravity of the component.

Elastic Modes - Up to six normal modes with vertical and lateral
deflections and slopes and torsional deflections.

Implicit Degrees of Freedom - Up to 12 other displacement degrees of
freedom may be defined along the component centerline and may be
oriented at angles defined in the X - Z and Y - Z planes (one of the
two angles being small). These implicit degrees of freedom are
arbitrary and may be degrees of freedom of other components, which
will result in the automatic coupling of the components. Implicit
and rotor hub degrees of freedom are automatically formulated into
tinear combinations of the rigid body and elastic degrees of

freedom.
Rotor Interfaces - Up to 4 rotors may be automatically coupled
through rigid massless connectors (shafts). The rotor hub degrees Sl

of freedom are defined as above, but may also include a displacement
from the component centerline.

Aerodynamic Forcing - Optional use of FFA@ for flat plate drag or
FFC2 for fuselage surface aerodynamic forces (see paragraph 3.2 for
details).

Multiple Uses - CFM2 can be used up to 4 times in a given model.

54

3.1.1.2 Degrees of Freedom - The names of the degrees of freedom chosen by
the user are formulated automatically as follows:

iqi rees of Freedom -

XCG sppp - longitudinal translation
YCG sppg - lateral translation

ZCG sppp - vertical translation
ROLLs@@@ - roll

PTCHs@@g - pitch

YAW sppg - yaw

Elastic Deqrees of Freedom -
QFUSsmg@P

where s = structure number (assigned during model formulation)
m = elastic mode n.mber

The positive orientations of the rigid body and interface degrees of freedom

and the literal portions of the names of the rigid body degrees of freedom are
presented in Figure 13.

ROTOR HUB DOFS

ZCG
YAW

YCG IMPLICIT DOF
PTCH

2 M XCG
ROLL CENTERLINE

Station, increasing (aft) —

Figure 13. CFM2 Rigid Body and Interface Degrees of Freedom.

55

3.1.1.3 Ipput., CFM2 - The CFM2 input prompts are shown below in capital
letters. Input prompt format is:

VARIABLE NAME (VARIABLE TYPE)

VARIABLE DESCRIPTION

REQUIRED NUMBER AND TYPE OF INPUTS (FORTRAN READ FORMAT)
response

Only required input (based on previous input) is requested.

RBM (Y or N)
RIGID BODY MODES
ENTER 1 Y or N VALUE

(Enter Y [yes] if rigid body modes are to be included, else N [no])

IXCG (Y or N)
LONGITUDINAL
ENTER 1 Y or N VALUE

(Y if longitudinal degree of freedom is elected, else N)

IYCG (Y or N)
LATERAL
ENTER 1 Y or N VALUE

IZCG (Y or N)
VERTICAL
ENTER 1 Y or N VALUE

IROLL (Y or N)
ROLL
ENTER 1 Y or N VALUE i

IPTCH (Y or N)
PITCH
ENTER 1 Y or N VALUE

TIAW (Y or N) v |
YAW |
ENTER 1 Y or N VALUE

CG (REAL) .
CG STATION (IN)

ENTER 1 REAL VALUE

(Station [inches] for CG; only necessary for pitch or yaw degrees of
freedom)

56

NMODE (INTEGER)
NO. OF ELASTIC MODZS
ENTER 1 INTEGER VALUE(S)

(Enter the number of elastic modes; @ < NMODE < 6)

NS (INTEGER)
NO. FUSELAGE STAS
ENTER 1 INTEGER VALUE(S)

(Enter the number of fuselage stations at which elastic modes will
be defined; 5 < NS < 20)

X (REAL)
INPUT STATION VALUES
ENTER NS REAL VALUES

(Enter the stations [inches] in ascending order)

VCn (Y or N)
MODEn VERTICAL COMP
ENTER 1 Y OR N VALUE

(Enter Y if mode n has a vertical component, else N)

In (REAL)
MODEn VERTICAL DISP
ENTER NS REAL VALUE(S)

(Enter the vertical displacement for each station for mode n)

ZPn (REAL)
MODEn VERTICAL SLOPE
ENTER NS REAL VALUE(S)

(Enter the vertical slopes for each station for mode n)

LCn (Y or N)
MODEn LATERAL COMP
ENTER 1 Y OR N VALUE

Yn (REAL)
MODEn LATERAL DISP
ENTER NS REAL VALUE(S)

YPn (REAL)
MODEn LATERAL SLOPE
ENTER NS REAL VALUE(S)

TCn (Y OR N)

MODEn TORSION COMP
ENTER 1 Y OR N VALUE

57

T (REAL)
MODEn TORSION DISP
ENTER NS REAL VALUE(S)

NR (INTEGER)
NO. OF ROTORS
ENTER 1 INTEGER VALUE(S)

(Enter the number of rotors to be coupled; § < NR < 4)

NROT (INTEGER)
ROTOR NUMBERS
ENTER NR INTEGER VALUES

(Enter rotor identification numbers; @ < NROT(I) < 4)

XROT (REAL)
RGTOR STATIONS
ENTER NR REAL VALUES

(Enter the stations [inches] at which the rotors are coupled [need
not be previously defined fuselage stations])

ZROT (REAL)
ROTOR VERTICAL HT
ENTER NR REAL VALUES

(Enter the vertical heights [inches] of the rotor hubs above the
X - Y plane)

ASF (REAL)
FWD SHAFT ANGLE
ENTER NR REAL VALUES

(Enter the angles [degrees] with respect to the component vertical
axis in the X - Z plane, positive being defined as inclination
toward the negative X-axis, at which the shafts to the rotor hubs
are inclined; ASF(I) must be small if ASL(I) is large)

ASL (REAL)
LAT SHAFT ANGLE
ENTER NR REAL VALUES

(Enter the angles [degrees] with respect to the compenent vertical
axis in the Y - Z plane, positive being defined as inclination
toward the positive Y-axis, at which the shafts to the rotor hubs
are inclined; ASL(I) must be small if ASF(I) is large)

IX (Y OR N)
HUB TRAN DOF - LONG
ENTER NR Y OR N VALUES (35A2)

(Enter Y if the rotor hub longitudinal degree of freedom is included
in the rotor component, else N)

58

IY (Y OR N)
HUB TRAN DOF - LAT
ENTER NR Y OR N VALUES (35A2)

IZ (Y or N)
HUB TRAN DOF - AXIAL
ENTER NR Y OR N VALUES

IAX (Y OR N)
HUB ANGL DOF - ROLL
ENTER NR Y OR N VALUES (35A2)

IAY (Y OR N)
HUB ANGL DOF - PITCH
ENTER NR Y OR N VALUES (35A2)

IAZ (Y OR N)
HUB ANGL DOF - YAW
ENTER NR Y OR N VALUES (35A2)

NI (INTEGER)
NO. OTHER IMPLCT DOF
ENTER 1 INTEGER VALUE(S)

(Enter the number of other implicit displacement degrees of freedom;
B < NI < 12)

CIDFL (DOF)
IMPLICIT DOF NAMES
ENTER NI DOF NAMES (A4,14) ONE PER LINE

(Enter the implicit degree of freedom names)

XSTA (REAL)
STA FOR EA IMPL DOF
ENTER NI REAL VALUES

(Enter the stations [inches] at which the implicit degrees of free-
dom are coupled [need not be previously defined fuselage stations])

AF (REAL)
FWD ANGLE FROM VERT
ENTER NI REAL VALUES

(Enter the angles [degrees] with respect to the component vertical
axis in the X - Z plane, positive being defined as inclination
toward the negative X-axis, at which the implicit degrees of freedom
are inclined; AF(I) must be small if AL(I) is large)

59

AL (REAL)
LAT ANGLE FROM VERT
ENTER NI REAL VALUES

(Enter the angles [degrees] with respect to the component vertical

axis in the Y - Z plane, positive being defined as inclination .
toward the positive Y-axis, at which the implicit degrees of freedom

are inclined; AL(I) must be small if AF(I) is large)

MASSL (REAL)
FUSELAGE WEIGHT (LB) ‘
ENTER 1 REAL VALUE

(Enter the fuselage weight [1b])

IMXF (REAL)
ROLL MOI (SLUG-FT(SQ))
ENTER 1 REAL VALUE

(Enter the roll mass moment of inertia of the fuselage)

IMYF (REAL)
PITCH MOI ABOUT CG
ENTER 1 REAL VALUE

IMZF (REAL)
YAW MOI ABOUT CG
ENTER 1 REAL VALUE

MMS (REAL)
MODAL MASS (SLUGS)
ENTER NMODE REAL VALUES

(Enter the modal mass for each elastic mode)
MD (REAL)

MODAL DAMPING (PCT)
ENTER NMODE REAL VALUES

(Enter percent of critical damping for each elastic mode)

FREQ (REAL) g
MODAL FREQUENCY (HZ)
ENTER NMODE REAL VALUES

3.1.2 CRR2 - Rotor, Rigid Blades. CRR2 is a rotor system representation with =
rigid hinged blade degrees of freedom defined in a rotating coordinate system

coupled to hub translation and rotation degrees of freedom defined in a nonro-

tating coordinate system.

60

3.1.2.1 Primary Features -

Rigid Hinged Blades - Up to 9 identical rigid hinged blades which
may have flap, lag, and pitch degrees of freedom. Blade degrees of
freedom are defined in a coordinate system which rotates about the
hub vertical principal axis.

incident Hinges With Springs and Dampers - Flap and lag hinges are
located coincidently and may be displaced spanwise from the vertical
principal axis. A spring and a damper may be specified for each
blade degree of freedom.

Flap-Lag ‘Coupling - A coupling factor may be applied for flap-lag
damping coupling and for flap-lag spring coupling.

Control System Interface - The blade pitch degree of freedom may be
coupled to a control system component through a rigid pitch horn
displaced spanwise from the hinge location.

Uniform or Nonuniform Blades - Option allowed for convenience of
input.

Hub Degrees of Freedom - Up to three translational and three rota-
tional hub degrees of freedom defined in a nonrotating Cartesian
coordinate system.

Aerodynamic Forcing - Optional use of FRA@, FRA2, or FRA3 rotor
aerodynamic forces (see paragraph 3.2 for details).

Multiple Uses - CRR2 can be used up to 4 times in a given model.

3.1.2.2 Degrees of Freedom - The names of the degrees of freedom chosen by
the user are formulated automatically as follows. All are optional, except
that at least one blade degree of freedom is required (see Figure 14).

Blade Degrees of Freedom (Rotating System) - one set for each blade:

BETArbgg - flap angle
ZETArb@@ - lag angle
THETrb@@ - pitch angle

61

THET

(HINGE)

ALFX

Figure 14. CRR2 Degrees of Freedom.

62

Hub Degrees of Freedom (Nonrotating System) -

XHUBr@@p - longitudinal translation
YHUBr@@g - lateral translation
ZHUBrg@@ - vertical translation
ALFXrg@gg - roll

ALFYrpgg - pitch

ALFZr@pg - yaw

where r = rotor number (assigned during model formulation)
b = blade number (btade 1 is the reference blade)

Implicit Degrees of Ffreedom (Rotating System) - The relationship
between control rod degrees of freedom (RODRrb@f) and blade degrees
of freedom is:

RODRrb@@ = PHL * THETrbpp + PHSTA * BETArbgg

where PHL is the pitch horn length and PHSTA is the pitch horn sta-
tion.

The implicit relationship is automatically established if blade
pitch is a degree of freedom and PHL # p. This is used to automati-
cally couple the rotor component to an associated control system
component (CCE@ or CCEl).

The positive orientations of the component degrees of freedom are
presented in Figure 14. Only the literal portions of the degree of
freedom names are shown. P is the azimuth angle of the reference
blade (blade 1).

63

3.1.2.3 Input, CRR2 - The CRR2 input prompts are shown 'below in capital
letters. Input prompt format is:

VARIABLE NAME (VARIABLE TYPE)
VARIABLE DESCRIPTION

REQUIRED NUMBER AND TYPE OF INPUTS (FORTRAN READ FORMAT)
response

Only required input (based on previous input) is requested.

IBETA (Y OR N)
BLADE FLAPPING DOF

k Kk % Kk % Kk & % % k k k k * * &k k k k k k %k & *k * kX * k *k Kk * k * &

* *
X BLADE MUST HAVE AT LEAST ONE OF FLAP, LAG, OR PITCH DOF *
* *

* %k k Kk Kk * Kk k Kk k Kk Kk & k Kk Kk % Kk d k k k k k k %k k k k Kk k k k &

ENTER 1 Y OR N VALUE

(Enter Y [yes] if blade flap degree of freedom is elected, else N
[no]; at least one of IBETA, IZETA, or ITHET must equal yes)

IZETA (Y or N)
BLADE LAG DOF
ENTER 1 Y OR N VALUE

ITHET (Y or N)
BLADE PITCH DOF
ENTER 1 Y OR N VALUE

IX (Y or N)

HUB TRAN DOF - LONG

ENTER 1 Y-OR N VALUE

IY (Y or N)

HUB TRAN DOF - LAT

ENTER 1 Y OR N VALUE

IZ (Y or N) v
HUB TRAN DOF - AXIAL

ENTER 1 Y OR N VALUE

IAX (Y or N) v

HUB ANGL DOF - ROLL
ENTER 1 Y OR N VALUE

IAY (Y or N)
HUB ANGL DOF - PITCH
ENTER 1 Y OR N VALUE

64

IAZ (Y or N)
HUB ANGL DOF - YAW
ENTER 1 Y OR N VALUE

PHL (REAL)

PITCH HORN LENGTH

+ VALUE IS FWD OF FA; - IS AFT
ENTER 1 REAL VALUE

(Enter pitch horn length [inches]; positive indicates that control
rod degrees of freedom will be located forward of the feathering
axis, negative aft)

PHSTA (REAL)

PITCH HORN STATION

DISTANCE OF STATION FROM HINGE
ENTER 1 REAL VALUE

(Enter the distance spanwise [inches] of the pitch horn from the
flap/lag hinge)

NB (INTEGER)
NUMBER OF BLADES
ENTER 1 INTEGER VALUE(S)

NBACTU (INTEGER)
ACTUAL NO. OF BLADES
ENTER 1 INTEGER VALUE(S)

(If a single-blade representation is elected, enter the actual num-
ber of blades represented)

R (REAL)
ROTOR RADIUS (IN)
ENTER 1 REAL VALUE

RPM (REAL)
ROTOR RPM
ENTER 1 REAL VALUE

IC (INTEGER)

ROTOR ROTATION

- 1 IS CLOCKWISE; + 1 IS COUNTERCLOCKWISE
ENTER 1 INTEGER VALUE(S)

(Counterclockwise = + ALFZ)
PSI (REAL)
AZIMUTH OF REF BLADE

AZIMUTH OF REFERENCE BLADE AT T = @
ENTER 1 REAL VALUE

(Enter the azimuth [degrees] of the reference blade [blade 1] feath-
ering axis at time, t, equal to zero)

65

E1 (REAL)
HINGE OFFS'-T
ENTER 1 R:AL VALUE

(Enter the distance spanwise [inches] to the flap/lag hinge from the
vertical principal axis) .

CBETA (REAL)
FLAP DAMPER VALUE
ENTER 1 REAL VALUE

(1b-sec-in.2/in.-deg)
KBETA (REAL)

FLAP SPRING STIFFNESS
ENTER 1 REAL VALUE |

(1b-in.2/in.-deg)
BPC (REAL)

PRECONE ANGLE
ENTER 1 REAL VALUE

(degrees)
CZETA (REAL)

LAG DAMPER VALUE
ENTER 1 REAL VALUE

(lb-sec-in.z/in.-deg)
KZETA (REAL)

LAG SPRING STIFFNESS
ENTER 1 REAL VALUE

(1b-in.%/in. -deg)
CTHET (REAL)

PITCH DAMPER VALUE
ENTER 1 REAL VALUE

(1b-sec-in.2/in.-deg)
KTHET (REAL)

PITCH SPRING STIFFNESS
ENTER 1 REAL VALUE

(1b-sec-in.2/in.-deg) e
RCOUPC (REAL)

FLAP-LAG DAMPING COUPLING
ENTER 1 REAL VALUE

(If CBETA, CZETA > @, may elect flap-lag damping coupling factor,
f < RCOUPC < 1)

66

RCOUPK (REAL)
FLAP-LAG STIFFNESS COUPLING
ENTER 1 REAL VALUE

(If KBETA, KZETA > @, may elect flap-lag stiffness coupling factor,
P < RCOUPK < 1)

MHUB (REAL)
HUB WEIGHT (LB)
ENTER 1 REAL VALUE

(tnter the hub weight [1b])

THUBX (REAL)

HUB MOI - REF BLADE

MOMENT OF INERTIA ABOUT REFERENCE BLADE AXIS
ENTER 1 REAL VALUE

(Enter the mass moment of inertia [lb-in.Z] of the hub about the
reference [in-plane] axis)

IHUBY (REAL)

HUB MOI - PERPENDICULAR

MOMENT OF INERTIA ABOUT PERPENDICULAR AXIS
ENTER 1 REAL VALUE

(Enter the moment of inertia of the hub about the in-plane axis per-
pendicular to the reference axis)

THUBZ (REAL)

HUB MOI - SHAFT AXIS

MOMENT OF INERTIA ABOUT SHAFT AXIS
ENTER 1 REAL VALUE

(Enter the moment of inertia of the hub about the shaft axis [verti-
cal principal axis])

THB (REAL)
ROOT PITCH ANGLE
ENTER 1 REAL VALUE

(Enter the blade root pitch angle [degrees]; + = nose up)

UB (Y or N)
UNIFORM BLADE
ENTER 1 Y OR N VALUE

(Enter Y if uniform blade is elected, else N, nonuniform)
If uniform blade:

UMB (REAL)
BLADE WT/UNIT LENGTH
ENTER 1 REAL VALUE

(Enter the blade weight per unit length [1b/in.])
67

UITH (REAL)
TOTAL FEATHERING MOI
ENTER 1 REAL VALUE

(Enter the total blade mass moment of inertia about the feathering
axis [1b-in.2])

UCG (REAL)

CG OFFSET

+ VALUE IS FWD; - IS AFT
ENTER 1 REAL VALUE

(Enter the CG offset chordwise from the blade feathering axis
[inches])

UTHX (REAL)

TOTAL BUILT-IN TWIST

- VALUE = NOSE DOWN; + VALUE = NOSE UP
ENTER 1 REAL VALUE

(Enter the difference in built-in blade pitch between the blade root
and the blade tip [degrees])

NX (INTEGER)
NO. OF BLADE STATIONS
ENTER 1 INTEGER VALUE(S)

(Enter the number of stations at which the blade geometric and mass
properties are to be defined; 5 < NX < 40)

If nonuniform blade:

NX (INTEGER)
NO OF BLADE STATIONS
ENTER 1 INTEGER VALUE(S)

X (REAL)
BLADE STATIONS
ENTER NX REAL VALUES

(Enter the blade stations [inches] at which the blade geometric and
mass properties are to be defined in ascending order)

MB (REAL)
BLADE WT/UNIT LENGTH
ENTER NX REAL VALUES

(Entér the blade weight per unit length [1b/in.] for each station)

ITH (REAL)
FEATHERING MOI
ENTER NX REAL VALUES

(Enter the blade mass moment of inertia per unit length about the
feathering axis [lb-in.z/in.] for each station)
68

THX (REAL)

BUILT-IN TWIST

- VALUE = NOSE DOWN; + VALUE = NOSE UP
ENTER NX REAL VALUES

L)
(Enter the difference in built-in blade pitch between the blade root
and each station [degrees])
CG (REAL)
2 CG OFFSET
+ VALUE IS FWD; - IS AFT
ENTER NX REAL VALUES
3.1.3 CRE3 - Rotor, Elastic Blades. CRE3 is a rotor system representation
with elastic blade degrees of freedom defined in a rotating coordinate system
coupled to hub translation and rotation degrees of freedom defined in a nonro-
tating coordinate system.
3.1.3.1 Primary Features
Elastic Blades - Up to 9 identical elastic blades which may have
physical degrees<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>